Canadian Mathematical Society www.cms.math.ca
 location:  Publications → journals
Search results

Search: MSC category 35J65 ( Nonlinear boundary value problems for linear elliptic equations )

 Expand all        Collapse all Results 1 - 3 of 3

1. CMB Online first

Zhang, Tao; Zhou, Chunqin
 Classification of solutions for harmonic functions with Neumann boundary value In this paper, we classify all solutions of $\left\{ \begin{array}{rcll} -\Delta u &=& 0 \quad &\text{ in }\mathbb{R}^{2}_{+}, \\ \dfrac{\partial u}{\partial t}&=&-c|x|^{\beta}e^{u} \quad &\text{ on }\partial \mathbb{R}^{2}_{+} \backslash \{0\}, \\ \end{array} \right.$ with the finite conditions $\int_{\partial \mathbb{R}^{2}_{+}}|x|^{\beta}e^{u}ds \lt C, \qquad \sup\limits_{\overline{\mathbb{R}^{2}_{+}}}{u(x)}\lt C.$ Here, $c$ is a positive number and $\beta \gt -1$. Keywords:Neumann problem, singular coefficient, classification of solutionsCategories:35A05, 35J65

2. CMB 2008 (vol 51 pp. 140)

Rossi, Julio D.
 First Variations of the Best Sobolev Trace Constant with Respect to the Domain In this paper we study the best constant of the Sobolev trace embedding $H^{1}(\Omega)\to L^{2}(\partial\Omega)$, where $\Omega$ is a bounded smooth domain in $\RR^N$. We find a formula for the first variation of the best constant with respect to the domain. As a consequence, we prove that the ball is a critical domain when we consider deformations that preserve volume. Keywords:nonlinear boundary conditions, Sobolev trace embeddingCategories:35J65, 35B33

3. CMB 1997 (vol 40 pp. 464)

Kuo, Chung-Cheng
 On the solvability of a Neumann boundary value problem at resonance We study the existence of solutions of the semilinear equations (1) $\triangle u + g(x,u)=h$, ${\partial u \over \partial n} = 0$ on $\partial \Omega$ in which the non-linearity $g$ may grow superlinearly in $u$ in one of directions $u \to \infty$ and $u \to -\infty$, and (2) $-\triangle u + g(x,u)=h$, ${\partial u \over \partial n} = 0$ on $\partial \Omega$ in which the nonlinear term $g$ may grow superlinearly in $u$ as $|u| \to \infty$. The purpose of this paper is to obtain solvability theorems for (1) and (2) when the Landesman-Lazer condition does not hold. More precisely, we require that $h$ may satisfy $\int g^\delta_- (x) \, dx < \int h(x) \, dx = 0< \int g^\gamma_+ (x)\,dx$, where $\gamma, \delta$ are arbitrarily nonnegative constants, $g^\gamma_+ (x) = \lim_{u \to \infty} \inf g(x,u) |u|^\gamma$ and $g^\delta_- (x)=\lim_{u \to -\infty} \sup g(x,u)|u|^\delta$. The proofs are based upon degree theoretic arguments. Keywords:Landesman-Lazer condition, Leray Schauder degreeCategories:35J65, 47H11, 47H15
 top of page | contact us | privacy | site map |

© Canadian Mathematical Society, 2017 : https://cms.math.ca/