1. CMB Online first
 He, Yubo; Qin, Dongdong; Tang, Xianhua

Ground state and multiple solutions for Kirchhoff type equations with critical exponent
In this paper, we consider the following
critical Kirchhoff type equation:
\begin{align*}
\left\{
\begin{array}{lll}

\left(a+b\int_{\Omega}\nabla u^2
\right)\Delta u=Q(x)u^4u + \lambda u^{q1}u,~~\mbox{in}~~\Omega,
\\
u=0,\quad \text{on}\quad \partial \Omega,
\end{array}
\right.
\end{align*}
By using variational methods that are constrained to the Nehari
manifold,
we prove that the above equation has a ground state solution
for the case when $3\lt q\lt 5$.
The relation between the number of maxima of $Q$
and the number of positive solutions for the problem is also
investigated.
Keywords:Kirchhoff type equation, variational methods, critical exponent, Nehari manifold, ground state Categories:35J20, 35J60, 35J25 

2. CMB 2017 (vol 60 pp. 422)
 Tang, Xianhua

New Superquadratic Conditions for Asymptotically Periodic SchrÃ¶dinger Equations
This paper is dedicated to studying the
semilinear SchrÃ¶dinger equation
$$
\left\{
\begin{array}{ll}
\triangle u+V(x)u=f(x, u), \ \ \ \ x\in {\mathbf{R}}^{N},
\\
u\in H^{1}({\mathbf{R}}^{N}),
\end{array}
\right.
$$
where $f$ is a superlinear, subcritical nonlinearity. It focuses
on the case where
$V(x)=V_0(x)+V_1(x)$, $V_0\in C(\mathbf{R}^N)$, $V_0(x)$ is 1periodic
in each of $x_1, x_2, \ldots, x_N$ and
$\sup[\sigma(\triangle +V_0)\cap (\infty, 0)]\lt 0\lt \inf[\sigma(\triangle
+V_0)\cap (0, \infty)]$,
$V_1\in C(\mathbf{R}^N)$ and $\lim_{x\to\infty}V_1(x)=0$. A new superquadratic
condition is obtained,
which is weaker than some well known results.
Keywords:SchrÃ¶dinger equation, superlinear, asymptotically periodic, ground state solutions of NehariPankov type Categories:35J20, 35J60 

3. CMB 2016 (vol 59 pp. 606)
 Mihăilescu, Mihai; Moroşanu, Gheorghe

Eigenvalues of $ \Delta_p \Delta_q $ Under Neumann Boundary Condition
The
eigenvalue problem $\Delta_p u\Delta_q u=\lambdau^{q2}u$
with $p\in(1,\infty)$, $q\in(2,\infty)$, $p\neq q$ subject to
the
corresponding homogeneous Neumann boundary condition is
investigated on a bounded open set with smooth boundary from
$\mathbb{R}^N$ with $N\geq 2$. A careful analysis of this problem leads
us to a complete description of the set of eigenvalues as being
a
precise interval $(\lambda_1, +\infty )$ plus an isolated point
$\lambda =0$. This comprehensive result is strongly related to
our
framework which is complementary to the wellknown case $p=q\neq
2$ for which a full description of the set of eigenvalues is
still
unavailable.
Keywords:eigenvalue problem, Sobolev space, Nehari manifold, variational methods Categories:35J60, 35J92, 46E30, 49R05 

4. CMB 2011 (vol 55 pp. 537)
5. CMB 2007 (vol 50 pp. 356)
 Filippakis, Michael E.; Papageorgiou, Nikolaos S.

Existence of Positive Solutions for Nonlinear Noncoercive Hemivariational Inequalities
In this paper we investigate the existence of positive solutions
for nonlinear elliptic problems driven by the $p$Laplacian with a
nonsmooth potential (hemivariational inequality). Under asymptotic
conditions that make the Euler functional indefinite and
incorporate in our framework the asymptotically linear problems,
using a variational approach based on nonsmooth critical point
theory, we obtain positive smooth solutions. Our analysis also
leads naturally to multiplicity results.
Keywords:$p$Laplacian, locally Lipschitz potential, nonsmooth critical point theory, principal eigenvalue, positive solutions, nonsmooth Mountain Pass Theorem Categories:35J20, 35J60, 35J85 

6. CMB 2001 (vol 44 pp. 346)
7. CMB 2001 (vol 44 pp. 210)
 Leung, Man Chun

Growth Estimates on Positive Solutions of the Equation $\Delta u+K u^{\frac{n+2}{n2}}=0$ in $\R^n$
We construct unbounded positive $C^2$solutions of the equation
$\Delta u + K u^{(n + 2)/(n  2)} = 0$ in $\R^n$ (equipped
with Euclidean metric $g_o$) such that $K$ is bounded between two
positive numbers in $\R^n$, the conformal metric $g=u^{4/(n2)}g_o$
is complete, and the volume growth of $g$ can be arbitrarily fast
or reasonably slow according to the constructions. By imposing natural
conditions on $u$, we obtain growth estimate on the $L^{2n/(n2)}$norm
of the solution and show that it has slow decay.
Keywords:positive solution, conformal scalar curvature equation, growth estimate Categories:35J60, 58G03 
