CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 35J20 ( Variational methods for second-order elliptic equations )

  Expand all        Collapse all Results 1 - 5 of 5

1. CMB Online first

He, Yubo; Qin, Dongdong; Tang, Xianhua
Ground state and multiple solutions for Kirchhoff type equations with critical exponent
In this paper, we consider the following critical Kirchhoff type equation: \begin{align*} \left\{ \begin{array}{lll} - \left(a+b\int_{\Omega}|\nabla u|^2 \right)\Delta u=Q(x)|u|^4u + \lambda |u|^{q-1}u,~~\mbox{in}~~\Omega, \\ u=0,\quad \text{on}\quad \partial \Omega, \end{array} \right. \end{align*} By using variational methods that are constrained to the Nehari manifold, we prove that the above equation has a ground state solution for the case when $3\lt q\lt 5$. The relation between the number of maxima of $Q$ and the number of positive solutions for the problem is also investigated.

Keywords:Kirchhoff type equation, variational methods, critical exponent, Nehari manifold, ground state
Categories:35J20, 35J60, 35J25

2. CMB 2017 (vol 60 pp. 422)

Tang, Xianhua
New Super-quadratic Conditions for Asymptotically Periodic Schrödinger Equations
This paper is dedicated to studying the semilinear Schrödinger equation $$ \left\{ \begin{array}{ll} -\triangle u+V(x)u=f(x, u), \ \ \ \ x\in {\mathbf{R}}^{N}, \\ u\in H^{1}({\mathbf{R}}^{N}), \end{array} \right. $$ where $f$ is a superlinear, subcritical nonlinearity. It focuses on the case where $V(x)=V_0(x)+V_1(x)$, $V_0\in C(\mathbf{R}^N)$, $V_0(x)$ is 1-periodic in each of $x_1, x_2, \ldots, x_N$ and $\sup[\sigma(-\triangle +V_0)\cap (-\infty, 0)]\lt 0\lt \inf[\sigma(-\triangle +V_0)\cap (0, \infty)]$, $V_1\in C(\mathbf{R}^N)$ and $\lim_{|x|\to\infty}V_1(x)=0$. A new super-quadratic condition is obtained, which is weaker than some well known results.

Keywords:Schrödinger equation, superlinear, asymptotically periodic, ground state solutions of Nehari-Pankov type
Categories:35J20, 35J60

3. CMB 2007 (vol 50 pp. 356)

Filippakis, Michael E.; Papageorgiou, Nikolaos S.
Existence of Positive Solutions for Nonlinear Noncoercive Hemivariational Inequalities
In this paper we investigate the existence of positive solutions for nonlinear elliptic problems driven by the $p$-Laplacian with a nonsmooth potential (hemivariational inequality). Under asymptotic conditions that make the Euler functional indefinite and incorporate in our framework the asymptotically linear problems, using a variational approach based on nonsmooth critical point theory, we obtain positive smooth solutions. Our analysis also leads naturally to multiplicity results.

Keywords:$p$-Laplacian, locally Lipschitz potential, nonsmooth critical point theory, principal eigenvalue, positive solutions, nonsmooth Mountain Pass Theorem
Categories:35J20, 35J60, 35J85

4. CMB 2004 (vol 47 pp. 515)

Frigon, M.
Remarques sur l'enlacement en théorie des points critiques pour des fonctionnelles continues
Dans cet article, \`a partir de la notion d'enlacement introduite dans ~\cite{F} entre des paires d'ensembles $(B,A)$ et $(Q,P)$, nous \'etablissons l'existence d'un point critique d'une fonctionnelle continue sur un espace m\'etrique lorsqu'une de ces paires enlace l'autre. Des renseignements sur la localisation du point critique sont aussi obtenus. Ces r\'esultats conduisent \`a une g\'en\'eralisation du th\'eor\`eme des trois points critiques. Finalement, des applications \`a des probl\`emes aux limites pour une \'equation quasi-lin\'eaire elliptique sont pr\'esent\'ees.

Categories:58E05, 35J20

5. CMB 2001 (vol 44 pp. 346)

Wang, Wei
Positive Solution of a Subelliptic Nonlinear Equation on the Heisenberg Group
In this paper, we establish the existence of positive solution of a nonlinear subelliptic equation involving the critical Sobolev exponent on the Heisenberg group, which generalizes a result of Brezis and Nirenberg in the Euclidean case.

Keywords:Heisenberg group, subLapacian, critical Sobolev exponent, extremals
Categories:35J20, 35J60

© Canadian Mathematical Society, 2017 : https://cms.math.ca/