Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 35J10 ( Schrodinger operator [See also 35Pxx] )

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB Online first

Liu, Yu; Qi, Shuai
Endpoint estimates of Riesz transforms associated with generalized Schrödinger operators
In this paper we establish the endpoint estimates and Hardy type estimates for the Riesz transform associated with the generalized Schrödinger operator.

Keywords:Schrödinger operator, fundamental solution, Riesz transform
Categories:35J10, 42B20, 42B30

2. CMB 2014 (vol 58 pp. 432)

Yang, Dachun; Yang, Sibei
Second-order Riesz Transforms and Maximal Inequalities Associated with Magnetic Schrödinger Operators
Let $A:=-(\nabla-i\vec{a})\cdot(\nabla-i\vec{a})+V$ be a magnetic Schrödinger operator on $\mathbb{R}^n$, where $\vec{a}:=(a_1,\dots, a_n)\in L^2_{\mathrm{loc}}(\mathbb{R}^n,\mathbb{R}^n)$ and $0\le V\in L^1_{\mathrm{loc}}(\mathbb{R}^n)$ satisfy some reverse Hölder conditions. Let $\varphi\colon \mathbb{R}^n\times[0,\infty)\to[0,\infty)$ be such that $\varphi(x,\cdot)$ for any given $x\in\mathbb{R}^n$ is an Orlicz function, $\varphi(\cdot,t)\in {\mathbb A}_{\infty}(\mathbb{R}^n)$ for all $t\in (0,\infty)$ (the class of uniformly Muckenhoupt weights) and its uniformly critical upper type index $I(\varphi)\in(0,1]$. In this article, the authors prove that second-order Riesz transforms $VA^{-1}$ and $(\nabla-i\vec{a})^2A^{-1}$ are bounded from the Musielak-Orlicz-Hardy space $H_{\varphi,\,A}(\mathbb{R}^n)$, associated with $A$, to the Musielak-Orlicz space $L^{\varphi}(\mathbb{R}^n)$. Moreover, the authors establish the boundedness of $VA^{-1}$ on $H_{\varphi, A}(\mathbb{R}^n)$. As applications, some maximal inequalities associated with $A$ in the scale of $H_{\varphi, A}(\mathbb{R}^n)$ are obtained.

Keywords:Musielak-Orlicz-Hardy space, magnetic Schrödinger operator, atom, second-order Riesz transform, maximal inequality
Categories:42B30, 42B35, 42B25, 35J10, 42B37, 46E30

3. CMB 2006 (vol 49 pp. 144)

Taylor, Michael
Scattering Length and the Spectrum of $-\Delta+V$
Given a non-negative, locally integrable function $V$ on $\RR^n$, we give a necessary and sufficient condition that $-\Delta+V$ have purely discrete spectrum, in terms of the scattering length of $V$ restricted to boxes.


© Canadian Mathematical Society, 2018 :