Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 34K30 ( Equations in abstract spaces [See also 34Gxx, 35R09, 35R10, 47Jxx] )

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB Online first

Bu, Shangquan; Cai, Gang
Periodic solutions of second order degenerate differential equations with delay in Banach spaces
We give necessary and sufficient conditions of the $L^p$-well-posedness (resp. $B_{p,q}^s$-well-posedness) for the second order degenerate differential equation with finite delays: $(Mu)''(t)+Bu'(t)+Au(t)=Gu'_t+Fu_t+f(t),(t\in [0,2\pi])$ with periodic boundary conditions $(Mu)(0)=(Mu)(2\pi)$, $(Mu)'(0)=(Mu)'(2\pi)$, where $A, B, M$ are closed linear operators on a complex Banach space $X$ satisfying $D(A)\cap D(B)\subset D(M)$, $F$ and $G$ are bounded linear operators from $L^p([-2\pi,0];X)$ (resp. $B_{p,q}^s([-2\pi,0];X)$) into $X$.

Keywords:second order degenerate differential equation, Fourier multiplier theorem, well-posedness, Lebesgue-Bochner space, Besov space
Categories:34G10, 34K30, 43A15, 47D06

2. CMB Online first

Bu, Shangquan; Cai, Gang
Hölder continuous solutions of degenerate differential equations with finite delay
Using known operator-valued Fourier multiplier results on vector-valued Hölder continuous function spaces $C^\alpha (\mathbb R; X)$, we completely characterize the $C^\alpha$-well-posedness of the first order degenerate differential equations with finite delay $(Mu)'(t) = Au(t) + Fu_t + f(t)$ for $t\in\mathbb R$ by the boundedness of the $(M, F)$-resolvent of $A$ under suitable assumption on the delay operator $F$, where $A, M$ are closed linear operators on a Banach space $X$ satisfying $D(A)\cap D(M) \not=\{0\}$, the delay operator $F$ is a bounded linear operator from $C([-r, 0]; X)$ to $X$ and $r \gt 0$ is fixed.

Keywords:well-posedness, degenerate differential equation, $\dot{C}^\alpha$-multiplier, Hölder continuous function space
Categories:34N05, 34G10, 47D06, 47A10, 34K30

3. CMB 2011 (vol 55 pp. 736)

Hernández, Eduardo; O'Regan, Donal
Existence of Solutions for Abstract Non-Autonomous Neutral Differential Equations
In this paper we discuss the existence of mild and classical solutions for a class of abstract non-autonomous neutral functional differential equations. An application to partial neutral differential equations is considered.

Keywords:neutral equations, mild solutions, classical solutions
Categories:35R10, 34K40, 34K30

© Canadian Mathematical Society, 2017 :