Search results
Search: MSC category 33C05
( Classical hypergeometric functions, ${}_2F_1$ )
1. CMB Online first
 Awonusika, Richard; Taheri, Ali

A spectral identity on Jacobi polynomials and its analytic implications
The Jacobi coefficients $c^{\ell}_{j}(\alpha,\beta)$ ($1\leq
j\leq \ell$, $\alpha,\beta\gt 1$) are linked to the Maclaurin
spectral expansion of the Schwartz kernel of functions of the
Laplacian on a compact rank one symmetric space. It
is proved that these coefficients can be computed by transforming
the even derivatives of the the Jacobi polynomials $P_{k}^{(\alpha,\beta)}$ ($k\geq 0, \alpha,\beta\gt 1$) into a spectral sum associated with
the Jacobi operator. The first few coefficients are explicitly
computed and a direct trace
interpretation of the Maclaurin coefficients is presented.
Keywords:Jacobi coefficient, LaplaceBeltrami operator, symmetric space, Maclaurin expansion, Jacobi polynomial Categories:33C05, 33C45, 35A08, 35C05, 35C10, 35C15 

2. CMB 1999 (vol 42 pp. 427)
 Berndt, Bruce C.; Chan, Heng Huat

Ramanujan and the Modular $j$Invariant
A new infinite product $t_n$ was introduced by S.~Ramanujan on the
last page of his third notebook. In this paper, we prove
Ramanujan's assertions about $t_n$ by establishing new connections
between the modular $j$invariant and Ramanujan's cubic theory of
elliptic functions to alternative bases. We also show that for
certain integers $n$, $t_n$ generates the Hilbert class field of
$\mathbb{Q} (\sqrt{n})$. This shows that $t_n$ is a new class
invariant according to H.~Weber's definition of class invariants.
Keywords:modular functions, the Borweins' cubic thetafunctions, Hilbert class fields Categories:33C05, 33E05, 11R20, 11R29 
