Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All MSC categories starting with 32H15

  Expand all        Collapse all Results 1 - 2 of 2

1. CMB 2000 (vol 43 pp. 294)

Bracci, Filippo
Fixed Points of Commuting Holomorphic Maps Without Boundary Regularity
We identify a class of domains of $\C^n$ in which any two commuting holomorphic self-maps have a common fixed point.

Keywords:Holomorphic self-maps, commuting functions, fixed points, Wolff point, Julia's Lemma
Categories:32A10, 32A40, 32H15, 32A30

2. CMB 1997 (vol 40 pp. 117)

Vigué, Jean-Pierre
Un lemme de Schwarz pour les boules-unités ouvertes
Let $B_1$ and $B_2$ be the open unit balls of ${\bbd C}^{n_1}$ and ${\bbd C}^{n_2}$ for the norms $\Vert\,{.}\,\Vert_1$ and $\Vert\,{.}\, \Vert_2$. Let $f \colon B_1 \rightarrow B_2$ be a holomorphic mapping such that $f(0)=0$. It is well known that, for every $z \in B_1$, $\Vert f(z)\Vert_2 \leq \Vert z \Vert_1$, and $\Vert f'(0)\Vert \leq 1$. In this paper, I prove the converse of this result. Let $f \colon B_1 \rightarrow B_2$ be a holomorphic mapping such that $f'(0)$ is an isometry. If $B_2$ is strictly convex, I prove that $f(0) =0$ and that $f$ is linear. I also define the rank of a point $x$ belonging to the boundary of $B_1$ or $B_2$. Under some hypotheses on the ranks, I prove that a holomorphic mapping such that $f(0) = 0$ and that $f'(0)$ is an isometry is linear.

Categories:32H15, 32H02

© Canadian Mathematical Society, 2017 :