Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 32A60 ( Zero sets of holomorphic functions )

  Expand all        Collapse all Results 1 - 2 of 2

1. CMB 2010 (vol 53 pp. 311)

Jasiczak, MichaƂ
Remark on Zero Sets of Holomorphic Functions in Convex Domains of Finite Type
We prove that if the $(1,1)$-current of integration on an analytic subvariety $V\subset D$ satisfies the uniform Blaschke condition, then $V$ is the zero set of a holomorphic function $f$ such that $\log |f|$ is a function of bounded mean oscillation in $bD$. The domain $D$ is assumed to be smoothly bounded and of finite d'Angelo type. The proof amounts to non-isotropic estimates for a solution to the $\overline{\partial}$-equation for Carleson measures.

Categories:32A60, 32A35, 32F18

2. CMB 2008 (vol 51 pp. 618)

Valmorin, V.
Vanishing Theorems in Colombeau Algebras of Generalized Functions
Using a canonical linear embedding of the algebra ${\mathcal G}^{\infty}(\Omega)$ of Colombeau generalized functions in the space of $\overline{\C}$-valued $\C$-linear maps on the space ${\mathcal D}(\Omega)$ of smooth functions with compact support, we give vanishing conditions for functions and linear integral operators of class ${\mathcal G}^\infty$. These results are then applied to the zeros of holomorphic generalized functions in dimension greater than one.

Keywords:Colombeau generalized functions, linear integral operators, generalized holomorphic functions
Categories:32A60, 45P05, 46F30

© Canadian Mathematical Society, 2017 :