Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 30 ( Functions of a complex variable )

  Expand all        Collapse all Results 26 - 50 of 61

26. CMB 2012 (vol 56 pp. 241)

Betsakos, Dimitrios; Pouliasis, Stamatis
Versions of Schwarz's Lemma for Condenser Capacity and Inner Radius
We prove variants of Schwarz's lemma involving monotonicity properties of condenser capacity and inner radius. Also, we examine when a similar monotonicity property holds for the hyperbolic metric.

Keywords:condenser capacity, inner radius, hyperbolic metric, Schwarz's lemma
Categories:30C80, 30F45, 31A15

27. CMB 2011 (vol 56 pp. 229)

Arvanitidis, Athanasios G.; Siskakis, Aristomenis G.
Cesàro Operators on the Hardy Spaces of the Half-Plane
In this article we study the Cesàro operator $$ \mathcal{C}(f)(z)=\frac{1}{z}\int_{0}^{z}f(\zeta)\,d\zeta, $$ and its companion operator $\mathcal{T}$ on Hardy spaces of the upper half plane. We identify $\mathcal{C}$ and $\mathcal{T}$ as resolvents for appropriate semigroups of composition operators and we find the norm and the spectrum in each case. The relation of $\mathcal{C}$ and $\mathcal{T}$ with the corresponding Ces\`{a}ro operators on Lebesgue spaces $L^p(\mathbb R)$ of the boundary line is also discussed.

Keywords:Cesàro operators, Hardy spaces, semigroups, composition operators
Categories:47B38, 30H10, 47D03

28. CMB 2011 (vol 56 pp. 194)

Stefánsson, Úlfar F.
On the Smallest and Largest Zeros of Müntz-Legendre Polynomials
Müntz-Legendre polynomials $L_n(\Lambda;x)$ associated with a sequence $\Lambda=\{\lambda_k\}$ are obtained by orthogonalizing the system $(x^{\lambda_0}, x^{\lambda_1}, x^{\lambda_2}, \dots)$ in $L_2[0,1]$ with respect to the Legendre weight. If the $\lambda_k$'s are distinct, it is well known that $L_n(\Lambda;x)$ has exactly $n$ zeros $l_{n,n}\lt l_{n-1,n}\lt \cdots \lt l_{2,n}\lt l_{1,n}$ on $(0,1)$. First we prove the following global bound for the smallest zero, $$ \exp\biggl(-4\sum_{j=0}^n \frac{1}{2\lambda_j+1}\biggr) \lt l_{n,n}. $$ An important consequence is that if the associated Müntz space is non-dense in $L_2[0,1]$, then $$ \inf_{n}x_{n,n}\geq \exp\biggl({-4\sum_{j=0}^{\infty} \frac{1}{2\lambda_j+1}}\biggr)\gt 0, $$ so the elements $L_n(\Lambda;x)$ have no zeros close to 0. Furthermore, we determine the asymptotic behavior of the largest zeros; for $k$ fixed, $$ \lim_{n\rightarrow\infty} \vert \log l_{k,n}\vert \sum_{j=0}^n (2\lambda_j+1)= \Bigl(\frac{j_k}{2}\Bigr)^2, $$ where $j_k$ denotes the $k$-th zero of the Bessel function $J_0$.

Keywords:Müntz polynomials, Müntz-Legendre polynomials
Categories:42C05, 42C99, 41A60, 30B50

29. CMB 2011 (vol 55 pp. 509)

Gauthier, P. M.; Nestoridis, V.
Domains of Injective Holomorphy
A domain $\Omega$ is called a domain of injective holomorphy if there exists an injective holomorphic function $f\colon \Omega\rightarrow\mathbb{C}$ that is non-extendable. We give examples of domains that are domains of injective holomorphy and others that are not. In particular, every regular domain $(\overline\Omega^o=\Omega)$ is a domain of injective holomorphy, and every simply connected domain is a domain of injective holomorphy as well.

Keywords:domains of holomorphy

30. CMB 2009 (vol 53 pp. 23)

Chen, Huaihui; Zhang, Minzhu
Boundedness From Below of Multiplication Operators Between $\alpha$-Bloch Spaces
In this paper, the boundedness from below of multiplication operators between $\alpha$-Bloch spaces $\mathcal B^\alpha$, $\alpha\gt 0$, on the unit disk $D$ is studied completely. For a bounded multiplication operator $M_u\colon \mathcal B^\alpha\to\mathcal B^\beta$, defined by $M_uf=uf$ for $f\in\mathcal B^\alpha$, we prove the following result: (i) If $0\lt \beta\lt \alpha$, or $0\lt \alpha\le1$ and $\alpha\lt \beta$, $M_u$ is not bounded below; (ii) if $0\lt \alpha=\beta\le1$, $M_u$ is bounded below if and only if $\liminf_{z\to\partial D}|u(z)|\gt 0$; (iii) if $1\lt \alpha\le\beta$, $M_u$ is bounded below if and only if there exist a $\delta\gt 0$ and a positive $r\lt 1$ such that for every point $z\in D$ there is a point $z'\in D$ with the property $d(z',z)\lt r$ and $(1-|z'|^2)^{\beta-\alpha}|u(z')|\ge\delta$, where $d(\cdot,\cdot)$ denotes the pseudo-distance on $D$.

Keywords:$\alpha$-Bloch function, multiplication operator
Categories:32A18, 30H05

31. CMB 2009 (vol 52 pp. 481)

Alaca, Ay\c{s}e; Alaca, \c{S}aban; Williams, Kenneth S.
Some Infinite Products of Ramanujan Type
In his ``lost'' notebook, Ramanujan stated two results, which are equivalent to the identities \[ \prod_{n=1}^{\infty} \frac{(1-q^n)^5}{(1-q^{5n})} =1-5\sum_{n=1}^{\infty}\Big( \sum_{d \mid n} \qu{5}{d} d \Big) q^n \] and \[ q\prod_{n=1}^{\infty} \frac{(1-q^{5n})^5}{(1-q^{n})} =\sum_{n=1}^{\infty}\Big( \sum_{d \mid n} \qu{5}{n/d} d \Big) q^n. \] We give several more identities of this type.

Keywords:Power series expansions of certain infinite products
Categories:11E25, 11F11, 11F27, 30B10

32. CMB 2009 (vol 52 pp. 53)

Cummins, C. J.
Cusp Forms Like $\Delta$
Let $f$ be a square-free integer and denote by $\Gamma_0(f)^+$ the normalizer of $\Gamma_0(f)$ in $\SL(2,\R)$. We find the analogues of the cusp form $\Delta$ for the groups $\Gamma_0(f)^+$.

Categories:11F03, 11F22, 30F35

33. CMB 2008 (vol 51 pp. 497)

Borwein, Peter; Choi, Kwok-Kwong Stephen; Mercer, Idris
Expected Norms of Zero-One Polynomials
Let $\cA_n = \big\{ a_0 + a_1 z + \cdots + a_{n-1}z^{n-1} : a_j \in \{0, 1 \ } \big\}$, whose elements are called \emf{zero-one polynomials} and correspond naturally to the $2^n$ subsets of $[n] := \{ 0, 1, \ldots, n-1 \}$. We also let $\cA_{n,m} = \{ \alf(z) \in \cA_n : \alf(1) = m \}$, whose elements correspond to the ${n \choose m}$ subsets of~$[n]$ of size~$m$, and let $\cB_n = \cA_{n+1} \setminus \cA_n$, whose elements are the zero-one polynomials of degree exactly~$n$. Many researchers have studied norms of polynomials with restricted coefficients. Using $\norm{\alf}_p$ to denote the usual $L_p$ norm of~$\alf$ on the unit circle, one easily sees that $\alf(z) = a_0 + a_1 z + \cdots + a_N z^N \in \bR[z]$ satisfies $\norm{\alf}_2^2 = c_0$ and $\norm{\alf}_4^4 = c_0^2 + 2(c_1^2 + \cdots + c_N^2)$, where $c_k := \sum_{j=0}^{N-k} a_j a_{j+k}$ for $0 \le k \le N$. If $\alf(z) \in \cA_{n,m}$, say $\alf(z) = z^{\beta_1} + \cdots + z^{\beta_m}$ where $\beta_1 < \cdots < \beta_m$, then $c_k$ is the number of times $k$ appears as a difference $\beta_i - \beta_j$. The condition that $\alf \in \cA_{n,m}$ satisfies $c_k \in \{0,1\}$ for $1 \le k \le n-1$ is thus equivalent to the condition that $\{ \beta_1, \ldots, \beta_m \}$ is a \emf{Sidon set} (meaning all differences of pairs of elements are distinct). In this paper, we find the average of~$\|\alf\|_4^4$ over $\alf \in \cA_n$, $\alf \in \cB_n$, and $\alf \in \cA_{n,m}$. We further show that our expression for the average of~$\|\alf\|_4^4$ over~$\cA_{n,m}$ yields a new proof of the known result: if $m = o(n^{1/4})$ and $B(n,m)$ denotes the number of Sidon sets of size~$m$ in~$[n]$, then almost all subsets of~$[n]$ of size~$m$ are Sidon, in the sense that $\lim_{n \to \infty} B(n,m)/\binom{n}{m} = 1$.

Categories:11B83, 11C08, 30C10

34. CMB 2008 (vol 51 pp. 481)

Bayart, Frédéric
Universal Inner Functions on the Ball
It is shown that given any sequence of automorphisms $(\phi_k)_k$ of the unit ball $\bn$ of $\cn$ such that $\|\phi_k(0)\|$ tends to $1$, there exists an inner function $I$ such that the family of ``non-Euclidean translates" $(I\circ\phi_k)_k$ is locally uniformly dense in the unit ball of $H^\infty(\bn)$.

Keywords:inner functions, automorphisms of the ball, universality
Categories:32A35, 30D50, 47B38

35. CMB 2008 (vol 51 pp. 334)

Ascah-Coallier, I.; Gauthier, P. M.
Value Distribution of the Riemann Zeta Function
In this note, we give a new short proof of the fact, recently discovered by Ye, that all (finite) values are equidistributed by the Riemann zeta function.

Keywords:Nevanlinna theory, deficiency, Riemann zeta function

36. CMB 2008 (vol 51 pp. 195)

Chen, Huaihui; Gauthier, Paul
Boundedness from Below of Composition Operators on $\alpha$-Bloch Spaces
We give a necessary and sufficient condition for a composition operator on an $\alpha$-Bloch space with $\alpha\ge 1$ to be bounded below. This extends a known result for the Bloch space due to P. Ghatage, J. Yan, D. Zheng, and H. Chen.

Keywords:Bloch functions, composition operators
Categories:32A18, 30H05

37. CMB 2007 (vol 50 pp. 579)

Kot, Piotr
$p$-Radial Exceptional Sets and Conformal Mappings
For $p>0$ and for a given set $E$ of type $G_{\delta}$ in the boundary of the unit disc $\partial\mathbb D$ we construct a holomorphic function $f\in\mathbb O(\mathbb D)$ such that \[ \int_{\mathbb D\setminus[0,1]E}|ft|^{p}\,d\mathfrak{L}^{2}<\infty\] and\[ E=E^{p}(f)=\Bigl\{ z\in\partial\mathbb D:\int_{0}^{1}|f(tz)|^{p}\,dt=\infty\Bigr\} .\] In particular if a set $E$ has a measure equal to zero, then a function $f$ is constructed as integrable with power $p$ on the unit disc $\mathbb D$.

Keywords:boundary behaviour of holomorphic functions, exceptional sets
Categories:30B30, 30E25

38. CMB 2007 (vol 50 pp. 123)

Nikolov, Nikolai; Pflug, Peter
Simultaneous Approximation and Interpolation on Arakelian Sets
We extend results of P.~M. Gauthier, W. Hengartner and A.~A. Nersesyan on simultaneous approximation and interpolation on Arakelian sets.

Keywords:Arakelian's theorem,, Arakelian sets

39. CMB 2007 (vol 50 pp. 11)

Borwein, David; Borwein, Jonathan
van der Pol Expansions of L-Series
We provide concise series representations for various L-series integrals. Different techniques are needed below and above the abscissa of absolute convergence of the underlying L-series.

Keywords:Dirichlet series integrals, Hurwitz zeta functions, Plancherel theorems, L-series
Categories:11M35, 11M41, 30B50

40. CMB 2006 (vol 49 pp. 438)

Mercer, Idris David
Unimodular Roots of\\ Special Littlewood Polynomials
We call $\alpha(z) = a_0 + a_1 z + \dots + a_{n-1} z^{n-1}$ a Littlewood polynomial if $a_j = \pm 1$ for all $j$. We call $\alpha(z)$ self-reciprocal if $\alpha(z) = z^{n-1}\alpha(1/z)$, and call $\alpha(z)$ skewsymmetric if $n = 2m+1$ and $a_{m+j} = (-1)^j a_{m-j}$ for all $j$. It has been observed that Littlewood polynomials with particularly high minimum modulus on the unit circle in $\bC$ tend to be skewsymmetric. In this paper, we prove that a skewsymmetric Littlewood polynomial cannot have any zeros on the unit circle, as well as providing a new proof of the known result that a self-reciprocal Littlewood polynomial must have a zero on the unit circle.

Categories:26C10, 30C15, 42A05

41. CMB 2006 (vol 49 pp. 381)

Girela, Daniel; Peláez, José Ángel
On the Membership in Bergman Spaces of the Derivative of a Blaschke Product With Zeros in a Stolz Domain
It is known that the derivative of a Blaschke product whose zero sequence lies in a Stolz angle belongs to all the Bergman spaces $A^p$ with $01$). As a consequence, we prove that there exists a Blaschke product $B$ with zeros on a radius such that $B'\notin A^{3/2}$.

Keywords:Blaschke products, Hardy spaces, Bergman spaces
Categories:30D50, 30D55, 32A36

42. CMB 2005 (vol 48 pp. 580)

Kot, Piotr
Exceptional Sets in Hartogs Domains
Assume that $\Omega$ is a Hartogs domain in $\mathbb{C}^{1+n}$, defined as $\Omega=\{(z,w)\in\mathbb{C}^{1+n}:|z|<\mu(w),w\in H\}$, where $H$ is an open set in $\mathbb{C}^{n}$ and $\mu$ is a continuous function with positive values in $H$ such that $-\ln\mu$ is a strongly plurisubharmonic function in $H$. Let $\Omega_{w}=\Omega\cap(\mathbb{C}\times\{w\})$. For a given set $E$ contained in $H$ of the type $G_{\delta}$ we construct a holomorphic function $f\in\mathbb{O}(\Omega)$ such that \[ E=\Bigl\{ w\in\mathbb{C}^{n}:\int_{\Omega_{w}}|f(\cdot\,,w)|^{2}\,d\mathfrak{L}^{2}=\infty\Bigr\}. \]

Keywords:boundary behaviour of holomorphic functions,, exceptional sets

43. CMB 2005 (vol 48 pp. 409)

Gauthier, P. M.; Xiao, J.
The Existence of Universal Inner Functions on the Unit Ball of $\mathbb{C}^n$
It is shown that there exists an inner function $I$ defined on the unit ball ${\bf B}^n$ of ${\mathbb C}^n$ such that each function holomorphic on ${\bf B}^n$ and bounded by $1$ can be approximated by ``non-Euclidean translates" of $I$.

Keywords:universal inner functions
Categories:32A35, 30D50, 47B38

44. CMB 2004 (vol 47 pp. 17)

Gorkin, Pamela; Mortini, Raymond
Universal Singular Inner Functions
We show that there exists a singular inner function $S$ which is universal for noneuclidean translates; that is one for which the set $\{S(\frac{z+z_n}{1+\bar z_nz}):n\in\mathbb{N}\}$ is locally uniformly dense in the set of all zero-free holomorphic functions in $\mathbb{D}$ bounded by one.


45. CMB 2004 (vol 47 pp. 152)

Zheng, Jian-Hua
On Uniqueness of Meromorphic Functions with Shared Values in Some Angular Domains
In this paper we investigate the uniqueness of transcendental meromorphic function dealing with the shared values in some angular domains instead of the whole complex plane.

Keywords:Nevanlinna theory, meromorphic function, shared value

46. CMB 2003 (vol 46 pp. 559)

Marco, Nicolas; Massaneda, Xavier
On Density Conditions for Interpolation in the Ball
In this paper we study interpolating sequences for two related spaces of holomorphic functions in the unit ball of $\C^n$, $n>1$. We first give density conditions for a sequence to be interpolating for the class $A^{-\infty}$ of holomorphic functions with polynomial growth. The sufficient condition is formally identical to the characterizing condition in dimension $1$, whereas the necessary one goes along the lines of the results given by Li and Taylor for some spaces of entire functions. In the second part of the paper we show that a density condition, which for $n=1$ coincides with the characterizing condition given by Seip, is sufficient for interpolation in the (weighted) Bergman space.

Categories:32A36, 32A38, 30E05

47. CMB 2003 (vol 46 pp. 95)

Gauthier, P. M.
Cercles de remplissage for the Riemann Zeta Function
The celebrated theorem of Picard asserts that each non-constant entire function assumes every value infinitely often, with at most one exception. The Riemann zeta function has this Picard behaviour in a sequence of discs lying in the critical band and whose diameters tend to zero. According to the Riemann hypothesis, the value zero would be this (unique) exceptional value.

Keywords:cercles de remplissage, Riemann zeta function

48. CMB 2002 (vol 45 pp. 265)

Nawrocki, Marek
On the Smirnov Class Defined by the Maximal Function
H.~O.~Kim has shown that contrary to the case of $H^p$-space, the Smirnov class $M$ defined by the radial maximal function is essentially smaller than the classical Smirnov class of the disk. In the paper we show that these two classes have the same corresponding locally convex structure, {\it i.e.} they have the same dual spaces and the same Fr\'echet envelopes. We describe a general form of a continuous linear functional on $M$ and multiplier from $M$ into $H^p$, $0 < p \leq \infty$.

Keywords:Smirnov class, maximal radial function, multipliers, dual space, Fréchet envelope
Categories:46E10, 30A78, 30A76

49. CMB 2002 (vol 45 pp. 89)

Grant, David
On Gunning's Prime Form in Genus $2$
Using a classical generalization of Jacobi's derivative formula, we give an explicit expression for Gunning's prime form in genus 2 in terms of theta functions and their derivatives.

Categories:14K25, 30F10

50. CMB 2002 (vol 45 pp. 154)

Weitsman, Allen
On the Poisson Integral of Step Functions and Minimal Surfaces
Applications of minimal surface methods are made to obtain information about univalent harmonic mappings. In the case where the mapping arises as the Poisson integral of a step function, lower bounds for the number of zeros of the dilatation are obtained in terms of the geometry of the image.

Keywords:harmonic mappings, dilatation, minimal surfaces
Categories:30C62, 31A05, 31A20, 49Q05
   1 2 3    

© Canadian Mathematical Society, 2017 :