Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 22D40 ( Ergodic theory on groups [See also 28Dxx] )

  Expand all        Collapse all Results 1 - 2 of 2

1. CMB Online first

Boutonnet, Remi; Roydor, Jean
A note on uniformly bounded cocycles into finite von Neumann algebras
We give a short proof of a result of T. Bates and T. Giordano stating that any uniformly bounded Borel cocycle into a finite von Neumann algebra is cohomologous to a unitary cocycle. We also point out a separability issue in their proof. Our approach is based on the existence of a non-positive curvature metric on the positive cone of a finite von Neumann algebra.

Keywords:Borel cocycle, von Neumann algebra
Categories:46L55, 46L40, 22D40

2. CMB 2004 (vol 47 pp. 215)

Jaworski, Wojciech
Countable Amenable Identity Excluding Groups
A discrete group $G$ is called \emph{identity excluding\/} if the only irreducible unitary representation of $G$ which weakly contains the $1$-dimensional identity representation is the $1$-dimensional identity representation itself. Given a unitary representation $\pi$ of $G$ and a probability measure $\mu$ on $G$, let $P_\mu$ denote the $\mu$-average $\int\pi(g) \mu(dg)$. The goal of this article is twofold: (1)~to study the asymptotic behaviour of the powers $P_\mu^n$, and (2)~to provide a characterization of countable amenable identity excluding groups. We prove that for every adapted probability measure $\mu$ on an identity excluding group and every unitary representation $\pi$ there exists and orthogonal projection $E_\mu$ onto a $\pi$-invariant subspace such that $s$-$\lim_{n\to\infty}\bigl(P_\mu^n- \pi(a)^nE_\mu\bigr)=0$ for every $a\in\supp\mu$. This also remains true for suitably defined identity excluding locally compact groups. We show that the class of countable amenable identity excluding groups coincides with the class of $\FC$-hypercentral groups; in the finitely generated case this is precisely the class of groups of polynomial growth. We also establish that every adapted random walk on a countable amenable identity excluding group is ergodic.

Categories:22D10, 22D40, 43A05, 47A35, 60B15, 60J50

© Canadian Mathematical Society, 2018 :