51. CMB 2000 (vol 43 pp. 47)
 Božičević, Mladen

A Property of Lie Group Orbits
Let $G$ be a real Lie group and $X$ a real analytic manifold.
Suppose that $G$ acts analytically on $X$ with finitely many
orbits. Then the orbits are subanalytic in $X$. As a consequence
we show that the microsupport of a $G$equivariant sheaf on $X$ is
contained in the conormal variety of the $G$action.
Categories:32B20, 22E15 

52. CMB 1999 (vol 42 pp. 393)
 Savin, Gordan

A Class of Supercuspidal Representations of $G_2(k)$
Let $H$ be an exceptional, adjoint group of type $E_6$ and split
rank 2, over a $p$adic field $k$. In this article we discuss the
restriction of the minimal representation of $H$ to a dual pair
$\PD^{\times}\times G_2(k)$, where $D$ is a division algebra of
dimension 9 over $k$. In particular, we discover an interesting
class of supercuspidal representations of $G_2(k)$.
Categories:22E35, 22E50, 11F70 

53. CMB 1998 (vol 41 pp. 463)
 Moran, Alan

The right regular representation of a compact right topological group
We show that for certain compact right topological groups,
$\overline{r(G)}$, the strong operator topology closure of
the image of the right regular representation of $G$ in
${\cal L}({\cal H})$, where ${\cal H} = \L2$, is a compact
topological group and introduce a class of representations,
${\cal R}$, which effectively transfers the representation
theory of $\overline{r(G)}$ over to $G$. Amongst the groups
for which this holds is the class of equicontinuous groups
which have been studied by Ruppert in [10]. We use familiar
examples to illustrate these features of the theory and to
provide a counterexample. Finally we remark that every
equicontinuous group which is at the same time a Borel group
is in fact a topological group.
Category:22D99 

54. CMB 1998 (vol 41 pp. 368)