Expand all Collapse all | Results 1 - 25 of 44 |
1. CMB 2013 (vol 57 pp. 357)
Representation Equivalent Bieberbach Groups and Strongly Isospectral Flat Manifolds Let $\Gamma_1$ and $\Gamma_2$ be Bieberbach groups contained in the
full isometry group $G$ of $\mathbb{R}^n$.
We prove that if the compact flat manifolds $\Gamma_1\backslash\mathbb{R}^n$ and
$\Gamma_2\backslash\mathbb{R}^n$ are strongly isospectral then the Bieberbach groups
$\Gamma_1$ and $\Gamma_2$ are representation equivalent, that is, the
right regular representations $L^2(\Gamma_1\backslash G)$ and
$L^2(\Gamma_2\backslash G)$ are unitarily equivalent.
Keywords:representation equivalent, strongly isospectrality, compact flat manifolds Categories:58J53, 22D10 |
2. CMB 2012 (vol 56 pp. 881)
Free Groups Generated by Two Heisenberg Translations In this paper, we will discuss the groups generated by two
Heisenberg translations of $\mathbf{PU}(2,1)$ and determine when they are free.
Keywords:free group, Heisenberg group, complex triangle group Categories:30F40, 22E40, 20H10 |
3. CMB 2012 (vol 57 pp. 424)
A Note on Amenability of Locally Compact Quantum Groups In this short note we introduce a notion called ``quantum injectivity''
of locally compact quantum groups, and prove that it is equivalent
to amenability of the dual. Particularly, this provides a new characterization
of amenability of locally compact groups.
Keywords:amenability, conditional expectation, injectivity, locally compact quantum group, quantum injectivity Categories:20G42, 22D25, 46L89 |
4. CMB 2012 (vol 56 pp. 709)
Universal Minimal Flows of Groups of Automorphisms of Uncountable Structures It is a well-known fact, that the greatest ambit for
a topological group $G$ is the Samuel compactification of $G$ with
respect to the right uniformity on $G.$ We apply the original
description by Samuel from 1948 to give a simple computation of the
universal minimal flow for groups of automorphisms of uncountable
structures using FraÃ¯ssÃ© theory and Ramsey theory. This work
generalizes some of the known results about countable structures.
Keywords:universal minimal flows, ultrafilter flows, Ramsey theory Categories:37B05, 03E02, 05D10, 22F50, 54H20 |
5. CMB 2012 (vol 56 pp. 647)
On Induced Representations Distinguished by Orthogonal Groups Let $F$ be a local non-archimedean field of characteristic zero. We
prove that a representation of $GL(n,F)$ obtained from irreducible
parabolic induction of supercuspidal representations is distinguished
by an orthogonal group only if the inducing data is distinguished by
appropriate orthogonal groups. As a corollary, we get that an
irreducible representation induced from supercuspidals that is
distinguished by an orthogonal group is metic.
Keywords:distinguished representation, parabolic induction Category:22E50 |
6. CMB 2011 (vol 56 pp. 442)
Closed Left Ideal Decompositions of $U(G)$ Let $G$ be an infinite discrete group and let $\beta G$ be the
Stone--Äech compactification of $G$. We take the points of $Äta
G$ to be the ultrafilters on $G$, identifying the principal
ultrafilters with the points of $G$. The set $U(G)$ of uniform
ultrafilters on $G$ is a closed two-sided ideal of $\beta G$. For
every $p\in U(G)$, define $I_p\subseteq\beta G$ by $I_p=\bigcap_{A\in
p}\operatorname{cl} (GU(A))$, where $U(A)=\{p\in U(G):A\in p\}$. We show
that if $|G|$ is a regular cardinal, then $\{I_p:p\in U(G)\}$ is the
finest decomposition of $U(G)$ into closed left ideals of $\beta G$
such that the corresponding quotient space of $U(G)$ is Hausdorff.
Keywords:Stone--Äech compactification, uniform ultrafilter, closed left ideal, decomposition Categories:22A15, 54H20, 22A30, 54D80 |
7. CMB 2011 (vol 56 pp. 213)
A Locally Compact Non Divisible Abelian Group Whose Character Group Is Torsion Free and Divisible It was claimed by Halmos in 1944 that if $G$ is a
Hausdorff locally compact topological abelian
group and if the character group of $G$ is torsion
free, then $G$ is divisible.
We prove that such a claim is false by
presenting a family of counterexamples.
While other counterexamples are known,
we also present a family of stronger counterexamples,
showing that even if one assumes that the character
group of $G$ is both torsion free and divisible,
it does not follow that $G$ is divisible.
Category:22B05 |
8. CMB 2011 (vol 55 pp. 870)
Left Invariant Einstein-Randers Metrics on Compact Lie Groups In this paper we study left invariant Einstein-Randers metrics on compact Lie
groups. First, we give a method to construct left invariant non-Riemannian Einstein-Randers metrics
on a compact Lie group, using the Zermelo navigation data.
Then we prove that this gives a complete classification of left invariant Einstein-Randers metrics on compact simple
Lie groups with the underlying Riemannian metric naturally reductive.
Further, we completely determine the identity component of the group of
isometries for this type of metrics on simple groups. Finally, we study some
geometric properties of such metrics. In particular, we give the formulae of geodesics and flag curvature
of such metrics.
Keywords:Einstein-Randers metric, compact Lie groups, geodesic, flag curvature Categories:17B20, 22E46, 53C12 |
9. CMB 2011 (vol 56 pp. 218)
Functional Equations and Fourier Analysis By exploring the relations among functional equations, harmonic analysis and representation theory,
we give a unified and very accessible approach to solve three important functional equations -
the d'Alembert equation, the Wilson equation, and the d'Alembert long equation -
on compact groups.
Keywords:functional equations, Fourier analysis, representation of compact groups Categories:39B52, 22C05, 43A30 |
10. CMB 2011 (vol 56 pp. 116)
Central Extensions of Loop Groups and Obstruction to Pre-Quantization An explicit construction of a pre-quantum line bundle for the moduli
space of flat $G$-bundles over a Riemann surface is given, where $G$
is any non-simply connected compact simple Lie group. This work helps
to explain a curious coincidence previously observed between
Toledano Laredo's work classifying central extensions of loop groups
$LG$ and the author's previous work on the obstruction to
pre-quantization of the moduli space of flat $G$-bundles.
Keywords:loop group, central extension, prequantization Categories:53D, 22E |
11. CMB 2011 (vol 55 pp. 297)
The Group $\operatorname{Aut}(\mu)$ is Roelcke Precompact Following a similar result of Uspenskij on the unitary group of a
separable Hilbert space, we show that, with respect to the lower (or
Roelcke) uniform structure, the Polish group $G=
\operatorname{Aut}(\mu)$ of automorphisms of an atomless standard
Borel probability space $(X,\mu)$ is precompact. We identify the
corresponding compactification as the space of Markov operators on
$L_2(\mu)$ and deduce that the algebra of right and left uniformly
continuous functions, the algebra of weakly almost periodic functions,
and the algebra of Hilbert functions on $G$, i.e., functions on
$G$ arising from unitary representations, all coincide. Again
following Uspenskij, we also conclude that $G$ is totally minimal.
Keywords:Roelcke precompact, unitary group, measure preserving transformations, Markov operators, weakly almost periodic functions Categories:54H11, 22A05, 37B05, 54H20 |
12. CMB 2011 (vol 54 pp. 663)
Admissible Sequences for Twisted Involutions in Weyl Groups
Let $W$ be a Weyl group, $\Sigma$ a set of simple reflections in $W$
related to a basis $\Delta$ for the root system $\Phi$ associated with
$W$ and $\theta$ an involution such that $\theta(\Delta) = \Delta$. We
show that the set of $\theta$-twisted involutions in $W$,
$\mathcal{I}_{\theta} = \{w\in W \mid \theta(w) = w^{-1}\}$ is in one
to one correspondence with the set of regular involutions
$\mathcal{I}_{\operatorname{Id}}$. The elements of $\mathcal{I}_{\theta}$ are
characterized by sequences in $\Sigma$ which induce an ordering called
the Richardson-Springer Poset. In particular, for $\Phi$ irreducible,
the ascending Richardson-Springer Poset of $\mathcal{I}_{\theta}$,
for nontrivial $\theta$ is identical to the descending
Richardson-Springer Poset of $\mathcal{I}_{\operatorname{Id}}$.
Categories:20G15, 20G20, 22E15, 22E46, 43A85 |
13. CMB 2010 (vol 54 pp. 44)
Star-Shapedness and $K$-Orbits in Complex Semisimple Lie Algebras
Given a complex semisimple Lie algebra
$\mathfrak{g}=\mathfrak{k}+i\mathfrak{k}$ ($\mathfrak{k}$ is a compact
real form of $\mathfrak{g}$), let $\pi\colon\mathfrak{g}\to
\mathfrak{h}$ be the orthogonal projection (with respect to the
Killing form) onto the Cartan subalgebra
$\mathfrak{h}:=\mathfrak{t}+i\mathfrak{t}$, where $\mathfrak{t}$ is a
maximal abelian subalgebra of $\mathfrak{k}$. Given $x\in
\mathfrak{g}$, we consider $\pi(\mathop{\textrm{Ad}}(K) x)$, where $K$ is
the analytic subgroup $G$ corresponding to $\mathfrak{k}$, and show
that it is star-shaped. The result extends a result of Tsing. We also
consider the generalized numerical range $f(\mathop{\textrm{Ad}}(K)x)$,
where $f$ is a linear functional on $\mathfrak{g}$. We establish the
star-shapedness of $f(\mathop{\textrm{Ad}}(K)x)$ for simple Lie algebras
of type $B$.
Categories:22E10, 17B20 |
14. CMB 2010 (vol 54 pp. 126)
Fundamental Solutions of Kohn Sub-Laplacians on Anisotropic Heisenberg Groups and H-type Groups
We prove that the fundamental solutions
of Kohn sub-Laplacians $\Delta + i\alpha \partial_t$
on the anisotropic Heisenberg groups are tempered distributions and have
meromorphic continuation in $\alpha$ with simple poles. We compute the
residues and find the partial fundamental solutions
at the poles. We also find formulas for the
fundamental solutions for some matrix-valued
Kohn type sub-Laplacians
on H-type groups.
Categories:22E30, 35R03, 43A80 |
15. CMB 2008 (vol 51 pp. 60)
F{\o}lner Nets for Semidirect Products of Amenable Groups For unimodular semidirect products of locally compact amenable
groups $N$ and $H$, we show that one can always construct a
F{\o}lner net of the form $(A_\alpha \times B_\beta)$ for $G$, where
$(A_\alpha)$ is a strong form of F{\o}lner net for $N$ and
$(B_\beta)$ is any F{\o}lner net for $H$. Applications to the
Heisenberg and Euclidean motion groups are provided.
Categories:22D05, 43A07, 22D15, 43A20 |
16. CMB 2007 (vol 50 pp. 632)
Transformations and Colorings of Groups Let $G$ be a compact topological group and let $f\colon G\to G$ be a
continuous transformation of $G$. Define $f^*\colon G\to G$ by
$f^*(x)=f(x^{-1})x$ and let $\mu=\mu_G$ be Haar measure on $G$. Assume
that $H=\Imag f^*$ is a subgroup of $G$ and for every
measurable $C\subseteq H$,
$\mu_G((f^*)^{-1}(C))=\mu_H(C)$. Then for every measurable
$C\subseteq G$, there exist $S\subseteq C$ and $g\in G$ such that
$f(Sg^{-1})\subseteq Cg^{-1}$ and $\mu(S)\ge(\mu(C))^2$.
Keywords:compact topological group, continuous transformation, endomorphism, Ramsey theoryinversion, Categories:05D10, 20D60, 22A10 |
17. CMB 2007 (vol 50 pp. 440)
A KÃ¼nneth Theorem for $p$-Adic Groups Let $G_1$ and $G_2$ be $p$-adic groups. We describe a decomposition of
${\rm Ext}$-groups in the category of smooth representations of
$G_1 \times G_2$ in terms of ${\rm Ext}$-groups for $G_1$ and $G_2$.
We comment on ${\rm Ext}^1_G(\pi,\pi)$ for a supercuspidal
representation
$\pi$ of a $p$-adic group $G$. We also consider an example of
identifying
the class, in a suitable ${\rm Ext}^1$, of a Jacquet module of certain
representations of $p$-adic ${\rm GL}_{2n}$.
Categories:22E50, 18G15, 55U25 |
18. CMB 2007 (vol 50 pp. 460)
Weak Semiprojectivity for Purely Infinite $C^*$-Algebras We prove that a separable, nuclear, purely infinite, simple
$C^*$-algebra satisfying the universal coefficient theorem
is weakly semiprojective if and only if
its $K$-groups are direct sums of cyclic groups.
Keywords:Kirchberg algebra, weak semiprojectivity, graph $C^*$-algebra Categories:46L05, 46L80, 22A22 |
19. CMB 2007 (vol 50 pp. 291)
Beurling's Theorem and Characterization of Heat Kernel for Riemannian Symmetric Spaces of Noncompact Type |
Beurling's Theorem and Characterization of Heat Kernel for Riemannian Symmetric Spaces of Noncompact Type We prove Beurling's theorem for rank $1$ Riemannian symmetric
spaces and relate its consequences with the characterization of
the heat kernel of the symmetric space.
Keywords:Beurling's Theorem, Riemannian symmetric spaces, uncertainty principle Categories:22E30, 43A85 |
20. CMB 2007 (vol 50 pp. 48)
Tensor Square of the Minimal Representation of $O(p,q)$ In this paper, we study the tensor product $\pi=\sigma^{\min}\otimes
\sigma^{\min}$ of the minimal representation $\sigma^{\min}$ of $O(p,q)$ with
itself, and decompose $\pi$ into a direct integral of irreducible
representations. The decomposition is given in terms of the Plancherel measure
on a certain real hyperbolic space.
Category:22e46 |
21. CMB 2006 (vol 49 pp. 578)
On the Structure of the Full Lift for the Howe Correspondence of $(Sp(n), O(V))$ for Rank-One Reducibilities |
On the Structure of the Full Lift for the Howe Correspondence of $(Sp(n), O(V))$ for Rank-One Reducibilities In this paper we determine the structure of the full lift for the Howe
correspondence of $(Sp(n),O(V))$ for rank-one reducibilities.
Categories:22E35, 22E50, 11F70 |
22. CMB 2005 (vol 48 pp. 505)
On the Generalized d'Alembert's and Wilson's Functional Equations on a Compact group Let $G$ be a compact group. Let $\sigma$ be a continuous involution
of $G$. In this paper, we are
concerned by the following functional equation
$$\int_{G}f(xtyt^{-1})\,dt+\int_{G}f(xt\sigma(y)t^{-1})\,dt=2g(x)h(y), \quad
x, y \in G,$$ where $f, g, h \colonG \mapsto \mathbb{C}$, to be
determined, are complex continuous functions on $G$ such that $f$ is
central. This equation generalizes d'Alembert's and Wilson's
functional equations. We show that the solutions are expressed by
means of characters of irreducible, continuous and unitary
representations of the group $G$.
Keywords:Compact groups, Functional equations, Central functions, Lie, groups, Invariant differential operators. Categories:39B32, 39B42, 22D10, 22D12, 22D15 |
23. CMB 2004 (vol 47 pp. 439)
On the Stable Basin Theorem The stable basin theorem was introduced by Basmajian and Miner as a
key step in their necessary condition for the discreteness of a
non-elementary group of complex hyperbolic isometries. In this
paper we improve several of Basmajian and Miner's key estimates and
so give a substantial improvement on the main inequality in the
stable basin theorem.
Categories:22E40, 20H10, 57S30 |
24. CMB 2004 (vol 47 pp. 215)
Countable Amenable Identity Excluding Groups A discrete group $G$ is called \emph{identity excluding\/}
if the only irreducible
unitary representation of $G$ which weakly contains the $1$-dimensional identity
representation is the $1$-dimensional identity representation itself. Given a
unitary representation $\pi$ of $G$ and a probability measure $\mu$ on $G$, let
$P_\mu$ denote the $\mu$-average $\int\pi(g) \mu(dg)$. The goal of this article
is twofold: (1)~to study the asymptotic behaviour of the powers $P_\mu^n$, and
(2)~to provide a characterization of countable amenable identity excluding groups.
We prove that for every adapted probability measure $\mu$ on an identity excluding
group and every unitary representation $\pi$ there exists and orthogonal projection
$E_\mu$ onto a $\pi$-invariant subspace such that $s$-$\lim_{n\to\infty}\bigl(P_\mu^n-
\pi(a)^nE_\mu\bigr)=0$ for every $a\in\supp\mu$. This also remains true for suitably
defined identity excluding locally compact groups. We show that the class of countable
amenable identity excluding groups coincides with the class of $\FC$-hypercentral
groups; in the finitely generated case this is precisely the class of groups of
polynomial growth. We also establish that every adapted random walk on a countable
amenable identity excluding group is ergodic.
Categories:22D10, 22D40, 43A05, 47A35, 60B15, 60J50 |
25. CMB 2003 (vol 46 pp. 332)
Some Questions about Semisimple Lie Groups Originating in Matrix Theory We generalize the well-known result that a square traceless complex
matrix is unitarily similar to a matrix with zero diagonal to
arbitrary connected semisimple complex Lie groups $G$ and their Lie
algebras $\mathfrak{g}$ under the action of a maximal compact subgroup
$K$ of $G$. We also introduce a natural partial order on
$\mathfrak{g}$: $x\le y$ if $f(K\cdot x) \subseteq f(K\cdot y)$ for
all $f\in \mathfrak{g}^*$, the complex dual of $\mathfrak{g}$. This
partial order is $K$-invariant and induces a partial order on the
orbit space $\mathfrak{g}/K$. We prove that, under some restrictions
on $\mathfrak{g}$, the set $f(K\cdot x)$ is star-shaped with respect
to the origin.
Categories:15A45, 20G20, 22E60 |