1. CMB Online first
 Yukita, Tomoshige

Growth rates of 3dimensional hyperbolic Coxeter groups are Perron numbers
In this paper we consider the growth rates of 3dimensional hyperbolic
Coxeter polyhedra with at least one dihedral angle of the form
$\frac{\pi}{k}$ for an integer $k\geq{7}$.
Combining a classical result by Parry with
a previous result of ours,
we prove that the growth rates of
3dimensional hyperbolic Coxeter groups are Perron numbers.
Keywords:Coxeter group, growth function, growth rate, Perron number Categories:20F55, 20F65 

2. CMB 2017 (vol 60 pp. 604)
 Louder, Larsen; Wilton, Henry

Stackings and the $W$cycles Conjecture
We prove Wise's $W$cycles conjecture: Consider a compact graph
$\Gamma'$ immersing into another graph $\Gamma$. For any immersed
cycle $\Lambda:S^1\to \Gamma$, we consider the map $\Lambda'$
from
the circular components $\mathbb{S}$ of the pullback to $\Gamma'$.
Unless
$\Lambda'$ is reducible, the degree of the covering map $\mathbb{S}\to
S^1$ is bounded above by minus the Euler characteristic of
$\Gamma'$. As a corollary, any finitely generated subgroup
of a
onerelator group has finitely generated Schur multiplier.
Keywords:free groups, onerelator groups, rightorderability Category:20F65 

3. CMB 2016 (vol 60 pp. 54)
 Button, Jack

Tubular Free by Cyclic Groups Act Freely on CAT(0) Cube Complexes
We identify when a tubular group (the fundamental group of a
finite
graph of groups with $\mathbb{Z}^2$ vertex and $\mathbb{Z}$ edge groups) is free
by
cyclic and show, using Wise's equitable sets criterion, that
every
tubular free by
cyclic group acts freely on a CAT(0) cube complex.
Keywords:CAT(0), tubular group Categories:20F65, 20F67, 20E08 

4. CMB 2016 (vol 60 pp. 77)
 Christ, Michael; Rieffel, Marc A.

Nilpotent Group C*algebras as Compact Quantum Metric Spaces
Let $\mathbb{L}$ be a length function on a group $G$, and let $M_\mathbb{L}$
denote the
operator of pointwise multiplication by $\mathbb{L}$ on $\lt(G)$.
Following Connes,
$M_\mathbb{L}$ can be used as a ``Dirac'' operator for the reduced
group C*algebra $C_r^*(G)$. It defines a
Lipschitz seminorm on $C_r^*(G)$, which defines a metric on the
state space of
$C_r^*(G)$. We show that
for any length function satisfying a strong form of polynomial
growth on a discrete group,
the topology from this metric
coincides with the
weak$*$ topology (a key property for the
definition of a ``compact quantum metric
space''). In particular, this holds for all wordlength functions
on finitely generated nilpotentbyfinite groups.
Keywords:group C*algebra, Dirac operator, quantum metric space, discrete nilpotent group, polynomial growth Categories:46L87, 20F65, 22D15, 53C23, 58B34 

5. CMB 2010 (vol 53 pp. 629)
6. CMB 2003 (vol 46 pp. 268)
 Puls, Michael J.

Group Cohomology and $L^p$Cohomology of Finitely Generated Groups
Let $G$ be a finitely generated, infinite group, let $p>1$, and let
$L^p(G)$ denote the Banach space $\{ \sum_{x\in G} a_xx \mid \sum_{x\in
G} a_x ^p < \infty \}$. In this paper we will study the first
cohomology group of $G$ with coefficients in $L^p(G)$, and the first
reduced $L^p$cohomology space of $G$. Most of our results will be for a
class of groups that contains all finitely generated, infinite nilpotent
groups.
Keywords:group cohomology, $L^p$cohomology, central element of infinite order, harmonic function, continuous linear functional Categories:43A15, 20F65, 20F18 
