1. CMB 2012 (vol 57 pp. 326)
 Ivanov, S. V.; Mikhailov, Roman

On Zerodivisors in Group Rings of Groups with Torsion
Nontrivial pairs of zerodivisors in group rings are
introduced and discussed. A problem on the existence of nontrivial
pairs of zerodivisors in group rings of free Burnside groups of odd
exponent $n \gg 1$ is solved in the affirmative. Nontrivial pairs of
zerodivisors are also found in group rings of free products of groups
with torsion.
Keywords:Burnside groups, free products of groups, group rings, zerodivisors Categories:20C07, 20E06, 20F05, , 20F50 

2. CMB 1998 (vol 41 pp. 109)
 Tahara, KenIchi; Vermani, L. R.; Razdan, Atul

On generalized third dimension subgroups
Let $G$ be any group, and $H$ be a normal subgroup of $G$. Then M.~Hartl
identified the subgroup $G \cap(1+\triangle^3(G)+\triangle(G)\triangle(H))$
of $G$. In this note we give an independent proof of the result of Hartl,
and we identify two subgroups
$G\cap(1+\triangle(H)\triangle(G)\triangle(H)+\triangle([H,G])\triangle(H))$,
$G\cap(1+\triangle^2(G)\triangle(H)+\triangle(K)\triangle(H))$ of $G$ for
some subgroup $K$ of $G$ containing $[H,G]$.
Categories:20C07, 16S34 

3. CMB 1997 (vol 40 pp. 47)
 Hartl, Manfred

A universal coefficient decomposition for subgroups induced by submodules of group algebras
Dimension subgroups and Lie dimension subgroups are known to satisfy a
`universal coefficient decomposition', {\it i.e.} their value with respect to
an arbitrary coefficient ring can be described in terms of their values with
respect to the `universal' coefficient rings given by the cyclic groups of
infinite and prime power order. Here this fact is generalized to much more
general types of induced subgroups, notably covering Fox subgroups and
relative dimension subgroups with respect to group algebra filtrations
induced by arbitrary $N$series, as well as certain common generalisations
of these which occur in the study of the former. This result relies on an
extension of the principal universal coefficient decomposition theorem on
polynomial ideals (due to Passi, Parmenter and Seghal), to all additive
subgroups of group rings. This is possible by using homological instead
of ring theoretical methods.
Keywords:induced subgroups, group algebras, Fox subgroups, relative dimension, subgroups, polynomial ideals Categories:20C07, 16A27 
