1. CMB 2005 (vol 48 pp. 221)
 Kerr, Matt

An Elementary Proof of Suslin Reciprocity
We state and prove an important special case of Suslin reciprocity
that has found significant use in the study of algebraic cycles. An
introductory account is provided of the regulator and norm maps on Milnor
$K_2$groups (for function fields) employed in the proof.
Categories:19D45, 19E15 

2. CMB 2005 (vol 48 pp. 237)
 Kimura, Kenichiro

Indecomposable Higher Chow Cycles
Let $X$ be a projective smooth variety over a field $k$.
In the first part we show that
an indecomposable element in $CH^2(X,1)$ can be lifted
to an indecomposable element in $CH^3(X_K,2)$ where $K$ is the function
field of 1 variable over $k$. We also show that if $X$ is the selfproduct
of an elliptic curve over $\Q$ then the $\Q$vector space of
indecomposable cycles
$CH^3_{ind}(X_\C,2)_\Q$ is infinite dimensional.
In the second part we give a new
definition of the group of indecomposable cycles
of $CH^3(X,2)$ and give an example of nontorsion
cycle in this group.
Categories:14C25, 19D45 
