CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 16N40 ( Nil and nilpotent radicals, sets, ideals, rings )

  Expand all        Collapse all Results 1 - 5 of 5

1. CMB 2017 (vol 60 pp. 319)

Khojasteh, Sohiela; Nikmehr, Mohammad Javad
The Weakly Nilpotent Graph of a Commutative Ring
Let $R$ be a commutative ring with non-zero identity. In this paper, we introduced the weakly nilpotent graph of a commutative ring. The weakly nilpotent graph of $R$ is denoted by $\Gamma_w(R)$ is a graph with the vertex set $R^{*}$ and two vertices $x$ and $y$ are adjacent if and only if $xy\in N(R)^{*}$, where $R^{*}=R\setminus\{0\}$ and $N(R)^{*}$ is the set of all non-zero nilpotent elements of $R$. In this article, we determine the diameter of weakly nilpotent graph of an Artinian ring. We prove that if $\Gamma_w(R)$ is a forest, then $\Gamma_w(R)$ is a union of a star and some isolated vertices. We study the clique number, the chromatic number and the independence number of $\Gamma_w(R)$. Among other results, we show that for an Artinian ring $R$, $\Gamma_w(R)$ is not a disjoint union of cycles or a unicyclic graph. For Artinan ring, we determine $\operatorname{diam}(\overline{\Gamma_w(R)})$. Finally, we characterize all commutative rings $R$ for which $\overline{\Gamma_w(R)}$ is a cycle, where $\overline{\Gamma_w(R)}$ is the complement of the weakly nilpotent graph of $R$.

Keywords:weakly nilpotent graph, zero-divisor graph, diameter, girth
Categories:05C15, 16N40, 16P20

2. CMB 2016 (vol 60 pp. 3)

Akbari, Saeeid; Alilou, Abbas; Amjadi, Jafar; Sheikholeslami, Seyed Mahmoud
The Co-annihilating-ideal Graphs of Commutative Rings
Let $R$ be a commutative ring with identity. The co-annihilating-ideal graph of $R$, denoted by $\mathcal{A}_R$, is a graph whose vertex set is the set of all non-zero proper ideals of $R$ and two distinct vertices $I$ and $J$ are adjacent whenever ${\operatorname {Ann}}(I)\cap {\operatorname {Ann}}(J)=\{0\}$. In this paper we initiate the study of the co-annihilating ideal graph of a commutative ring and we investigate its properties.

Keywords:commutative ring, co-annihilating ideal graph
Categories:13A15, 16N40

3. CMB 2016 (vol 59 pp. 340)

Kȩpczyk, Marek
A Note on Algebras that are Sums of Two Subalgebras
We study an associative algebra $A$ over an arbitrary field, that is a sum of two subalgebras $B$ and $C$ (i.e. $A=B+C$). We show that if $B$ is a right or left Artinian $PI$ algebra and $C$ is a $PI$ algebra, then $A$ is a $PI$ algebra. Additionally we generalize this result for semiprime algebras $A$. Consider the class of all semisimple finite dimensional algebras $A=B+C$ for some subalgebras $B$ and $C$ which satisfy given polynomial identities $f=0$ and $g=0$, respectively. We prove that all algebras in this class satisfy a common polynomial identity.

Keywords:rings with polynomial identities, prime rings
Categories:16N40, 16R10, , 16S36, 16W60, 16R20

4. CMB 2004 (vol 47 pp. 343)

Drensky, Vesselin; Hammoudi, Lakhdar
Combinatorics of Words and Semigroup Algebras Which Are Sums of Locally Nilpotent Subalgebras
We construct new examples of non-nil algebras with any number of generators, which are direct sums of two locally nilpotent subalgebras. Like all previously known examples, our examples are contracted semigroup algebras and the underlying semigroups are unions of locally nilpotent subsemigroups. In our constructions we make more transparent than in the past the close relationship between the considered problem and combinatorics of words.

Keywords:locally nilpotent rings,, nil rings, locally nilpotent semigroups,, semigroup algebras, monomial algebras, infinite words
Categories:16N40, 16S15, 20M05, 20M25, 68R15

5. CMB 1998 (vol 41 pp. 79)

Kelarev, A. V.
An answer to a question of Kegel on sums of rings
We construct a ring $R$ which is a sum of two subrings $A$ and $B$ such that the Levitzki radical of $R$ does not contain any of the hyperannihilators of $A$ and $B$. This answers an open question asked by Kegel in 1964.

Categories:16N40, 16N60

© Canadian Mathematical Society, 2017 : https://cms.math.ca/