Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 15A23 ( Factorization of matrices )

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB Online first

Liu, Zhongyun; Qin, Xiaorong; Wu, Nianci; Zhang, Yulin
The shifted classical circulant and skew circulant splitting iterative methods for Toeplitz matrices
It is known that every Toeplitz matrix $T$ enjoys a circulant and skew circulant splitting (denoted by CSCS) i.e., $T=C-S$ with $C$ a circulant matrix and $S$ a skew circulant matrix. Based on the variant of such a splitting (also referred to as CSCS), we first develop classical CSCS iterative methods and then introduce shifted CSCS iterative methods for solving hermitian positive definite Toeplitz systems in this paper. The convergence of each method is analyzed. Numerical experiments show that the classical CSCS iterative methods work slightly better than the Gauss-Seidel (GS) iterative methods if the CSCS is convergent, and that there is always a constant $\alpha$ such that the shifted CSCS iteration converges much faster than the Gauss-Seidel iteration, no matter whether the CSCS itself is convergent or not.

Keywords:Hermitian positive definite, CSCS splitting, Gauss-Seidel splitting, iterative method, Toeplitz matrix
Categories:15A23, 65F10, 65F15

2. CMB 2016 (vol 60 pp. 269)

Chen, Jianlong; Zhu, Huihui; Patricio, Pedro; Zhang, Yulin
Characterizations and Representations of Core and Dual Core Inverses
In this paper, double commutativity and the reverse order law for the core inverse are considered. Then, new characterizations of the Moore-Penrose inverse of a regular element are given by one-sided invertibilities in a ring. Furthermore, the characterizations and representations of the core and dual core inverses of a regular element are considered.

Keywords:regularities, group inverses, Moore-Penrose inverses, core inverses, dual core inverses, Dedekind-finite rings
Categories:15A09, 15A23

3. CMB 1998 (vol 41 pp. 178)

Krupnik, Ilya; Lancaster, Peter
Minimal pencil realizations of rational matrix functions with symmetries
A theory of minimal realizations of rational matrix functions $W(\lambda)$ in the ``pencil'' form $W(\lambda)=C(\lambda A_1-A_2)^{-1}B$ is developed. In particular, properties of the pencil $\lambda A_1-A_2$ are discussed when $W(\lambda)$ is hermitian on the real line, and when $W(\lambda)$ is hermitian on the unit circle.

Categories:93Bxx, 15A23

© Canadian Mathematical Society, 2017 :