1. CMB Online first
 Shirane, Taketo

Connected numbers and the embedded topology of plane curves
The splitting number of a plane irreducible curve for a Galois
cover is effective to distinguish the embedded topology of plane
curves.
In this paper, we define the connected number of a plane
curve (possibly reducible) for a Galois cover, which is similar
to the splitting number.
By using the connected number, we distinguish the embedded topology
of Artal arrangements of degree $b\geq 4$, where an Artal arrangement
of degree $b$ is a plane curve consisting of one smooth curve
of degree $b$ and three of its total inflectional tangen
Keywords:plane curve, splitting curve, Zariski pair, cyclic cover, splitting number Categories:14H30, 14H50, 14F45 

2. CMB Online first
 Reichstein, Zinovy B.

On a property of real plane curves of even degree
F. Cukierman asked whether or not for every
smooth
real plane curve $X \subset \mathbb{P}^2$ of even degree $d \geqslant
2$
there exists a real line
$L \subset \mathbb{P}^2$ such $X \cap L$ has no real points.
We show that the answer is ``yes" if $d = 2$ or $4$ and ``no"
if $n \geqslant 6$.
Keywords:real algebraic geometry, plane curve, maximizer function, bitangent Categories:14P05, 14H50 

3. CMB 2016 (vol 59 pp. 449)
 Abdallah, Nancy

On Hodge Theory of Singular Plane Curves
The dimensions of the graded quotients of the
cohomology of a plane curve complement $U=\mathbb P^2 \setminus C$
with respect to the Hodge filtration are described in terms of
simple geometrical invariants. The case of curves with ordinary
singularities is discussed in detail. We also give a precise
numerical estimate for the difference between the Hodge filtration
and the pole order filtration on $H^2(U,\mathbb C)$.
Keywords:plane curves, Hodge and pole order filtrations Categories:32S35, 32S22, 14H50 

4. CMB 2014 (vol 57 pp. 658)
 Thang, Nguyen Tat

Admissibility of Local Systems for some Classes of Line Arrangements
Let $\mathcal{A}$ be a line arrangement in the complex
projective plane $\mathbb{P}^2$ and let $M$ be its complement. A rank one
local system $\mathcal{L}$ on $M$ is admissible if roughly speaking
the cohomology groups
$H^m(M,\mathcal{L})$ can be computed directly from the cohomology
algebra $H^{*}(M,\mathbb{C})$. In this work, we give a sufficient
condition for the admissibility of all rank one local systems on
$M$. As a result, we obtain some properties of the characteristic
variety $\mathcal{V}_1(M)$ and the Resonance variety $\mathcal{R}_1(M)$.
Keywords:admissible local system, line arrangement, characteristic variety, multinet, resonance variety Categories:14F99, 32S22, 52C35, 05A18, 05C40, 14H50 

5. CMB 2010 (vol 54 pp. 56)
 Dinh, Thi Anh Thu

Characteristic Varieties for a Class of Line Arrangements
Let $\mathcal{A}$ be a line arrangement in the complex projective plane
$\mathbb{P}^2$, having the points of multiplicity $\geq 3$ situated on two
lines in $\mathcal{A}$, say $H_0$ and $H_{\infty}$. Then we show that the
nonlocal irreducible components of the first resonance variety
$\mathcal{R}_1(\mathcal{A})$ are 2dimensional and correspond to parallelograms $\mathcal{P}$ in
$\mathbb{C}^2=\mathbb{P}^2 \setminus H_{\infty}$ whose sides are in $\mathcal{A}$ and for
which $H_0$ is a diagonal.
Keywords:local system, line arrangement, characteristic variety, resonance variety Categories:14C21, 14F99, 32S22, 14E05, 14H50 
