Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 14H50 ( Plane and space curves )

  Expand all        Collapse all Results 1 - 5 of 5

1. CMB Online first

Reichstein, Zinovy B.
On a property of real plane curves of even degree
F. Cukierman asked whether or not for every smooth real plane curve $X \subset \mathbb{P}^2$ of even degree $d \geqslant 2$ there exists a real line $L \subset \mathbb{P}^2$ such $X \cap L$ has no real points. We show that the answer is ``yes" if $d = 2$ or $4$ and ``no" if $n \geqslant 6$.

Keywords:real algebraic geometry, plane curve, maximizer function, bitangent
Categories:14P05, 14H50

2. CMB Online first

Shirane, Taketo
Connected numbers and the embedded topology of plane curves
The splitting number of a plane irreducible curve for a Galois cover is effective to distinguish the embedded topology of plane curves. In this paper, we define the connected number of a plane curve (possibly reducible) for a Galois cover, which is similar to the splitting number. By using the connected number, we distinguish the embedded topology of Artal arrangements of degree $b\geq 4$, where an Artal arrangement of degree $b$ is a plane curve consisting of one smooth curve of degree $b$ and three of its total inflectional tangen

Keywords:plane curve, splitting curve, Zariski pair, cyclic cover, splitting number
Categories:14H30, 14H50, 14F45

3. CMB 2016 (vol 59 pp. 449)

Abdallah, Nancy
On Hodge Theory of Singular Plane Curves
The dimensions of the graded quotients of the cohomology of a plane curve complement $U=\mathbb P^2 \setminus C$ with respect to the Hodge filtration are described in terms of simple geometrical invariants. The case of curves with ordinary singularities is discussed in detail. We also give a precise numerical estimate for the difference between the Hodge filtration and the pole order filtration on $H^2(U,\mathbb C)$.

Keywords:plane curves, Hodge and pole order filtrations
Categories:32S35, 32S22, 14H50

4. CMB 2014 (vol 57 pp. 658)

Thang, Nguyen Tat
Admissibility of Local Systems for some Classes of Line Arrangements
Let $\mathcal{A}$ be a line arrangement in the complex projective plane $\mathbb{P}^2$ and let $M$ be its complement. A rank one local system $\mathcal{L}$ on $M$ is admissible if roughly speaking the cohomology groups $H^m(M,\mathcal{L})$ can be computed directly from the cohomology algebra $H^{*}(M,\mathbb{C})$. In this work, we give a sufficient condition for the admissibility of all rank one local systems on $M$. As a result, we obtain some properties of the characteristic variety $\mathcal{V}_1(M)$ and the Resonance variety $\mathcal{R}_1(M)$.

Keywords:admissible local system, line arrangement, characteristic variety, multinet, resonance variety
Categories:14F99, 32S22, 52C35, 05A18, 05C40, 14H50

5. CMB 2010 (vol 54 pp. 56)

Dinh, Thi Anh Thu
Characteristic Varieties for a Class of Line Arrangements
Let $\mathcal{A}$ be a line arrangement in the complex projective plane $\mathbb{P}^2$, having the points of multiplicity $\geq 3$ situated on two lines in $\mathcal{A}$, say $H_0$ and $H_{\infty}$. Then we show that the non-local irreducible components of the first resonance variety $\mathcal{R}_1(\mathcal{A})$ are 2-dimensional and correspond to parallelograms $\mathcal{P}$ in $\mathbb{C}^2=\mathbb{P}^2 \setminus H_{\infty}$ whose sides are in $\mathcal{A}$ and for which $H_0$ is a diagonal.

Keywords:local system, line arrangement, characteristic variety, resonance variety
Categories:14C21, 14F99, 32S22, 14E05, 14H50

© Canadian Mathematical Society, 2017 :