1. CMB 2014 (vol 57 pp. 538)
 Ide, Joshua; Jones, Lenny

Infinite Families of $A_4$Sextic Polynomials
In this article we develop a test to determine whether a sextic
polynomial that is irreducible over $\mathbb{Q}$ has Galois group isomorphic
to the alternating group $A_4$. This test does not involve the
computation of resolvents, and we use this test to construct several
infinite families of such polynomials.
Keywords:Galois group, sextic polynomial, inverse Galois theory, irreducible polynomial Categories:12F10, 12F12, 11R32, 11R09 

2. CMB 2014 (vol 57 pp. 735)
 Cagliero, Leandro; Szechtman, Fernando

On the Theorem of the Primitive Element with Applications to the Representation Theory of Associative and Lie Algebras
We describe of all finite
dimensional uniserial representations of a commutative associative
(resp. abelian Lie) algebra over a perfect (resp. sufficiently
large perfect) field. In the Lie case the size of the field
depends on the answer to following question, considered and solved
in this paper. Let $K/F$ be a finite separable field extension
and
let $x,y\in K$. When is $F[x,y]=F[\alpha x+\beta y]$ for some
nonzero elements $\alpha,\beta\in F$?
Keywords:uniserial module, Lie algebra, associative algebra, primitive element Categories:17B10, 13C05, 12F10, 12E20 

3. CMB 2006 (vol 49 pp. 11)
 Bevelacqua, Anthony J.; Motley, Mark J.

GoingDown Results for $C_{i}$Fields
We search for theorems that, given a $C_i$field $K$ and a subfield $k$ of $K$, allow
us to conclude that $k$ is a $C_j$field for some $j$. We give appropriate theorems in
the case $K=k(t)$ and $K = k\llp t\rrp$. We then consider the more difficult case where $K/k$
is an algebraic extension. Here we are able to prove some results, and make conjectures. We
also point out the connection between these questions and Lang's conjecture on nonreal function
fields over a real closed field.
Keywords:$C_i$fields, Lang's Conjecture Categories:12F, 14G 

4. CMB 2006 (vol 49 pp. 113)
5. CMB 2002 (vol 45 pp. 422)
6. CMB 2001 (vol 44 pp. 313)
 Reverter, Amadeu; Vila, NĂºria

Images of mod $p$ Galois Representations Associated to Elliptic Curves
We give an explicit recipe for the determination of the images
associated to the Galois action on $p$torsion points of elliptic
curves. We present a table listing the image for all the elliptic
curves defined over $\QQ$ without complex multiplication with
conductor less than 200 and for each prime number~$p$.
Keywords:Galois groups, elliptic curves, Galois representation, isogeny Categories:11R32, 11G05, 12F10, 14K02 
