Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 11F80 ( Galois representations )

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB Online first

Lee, Hao
Irregular Weight one points with $D_{4}$ Image
Darmon, Lauder and Rotger conjectured that the relative tangent space of the eigencurve at a classical, ordinary, irregular weight one point is of dimension two. This space can be identified with the space of normalized overconvergent generalized eigenforms, whose Fourier coefficients can be conjecturally described explicitly in terms of $p$-adic logarithms of algebraic numbers. This article presents the proof of this conjecture in the case where the weight one point is the intersection of two Hida families of Hecke theta series.

Keywords:weight one points, irregular, dihedral image, generalized eigenform, eigencurve, tangent space,
Categories:11F33, 11F80

2. CMB 2007 (vol 50 pp. 196)

Fernández, Julio; González, Josep; Lario, Joan-C.
Plane Quartic Twists of $X(5,3)$
Given an odd surjective Galois representation $\varrho\from \G_\Q\to\PGL_2(\F_3)$ and a positive integer~$N$, there exists a twisted modular curve $X(N,3)_\varrho$ defined over $\Q$ whose rational points classify the quadratic $\Q$-curves of degree $N$ realizing~$\varrho$. This paper gives a method to provide an explicit plane quartic model for this curve in the genus-three case $N=5$.

Categories:11F03, 11F80, 14G05

3. CMB 2002 (vol 45 pp. 337)

Chen, Imin
Surjectivity of $\mod\ell$ Representations Attached to Elliptic Curves and Congruence Primes
For a modular elliptic curve $E/\mathbb{Q}$, we show a number of links between the primes $\ell$ for which the mod $\ell$ representation of $E/\mathbb{Q}$ has projective dihedral image and congruence primes for the newform associated to $E/\mathbb{Q}$.

Keywords:torsion points of elliptic curves, Galois representations, congruence primes, Serre tori, grossencharacters, non-split Cartan
Categories:11G05, 11F80

© Canadian Mathematical Society, 2018 :