1. CMB Online first
2. CMB 2017 (vol 60 pp. 329)
 Le Fourn, Samuel

Nonvanishing of Central Values of $L$functions of Newforms in $S_2 (\Gamma_0 (dp^2))$ Twisted by Quadratic Characters
We prove that for $d \in \{ 2,3,5,7,13 \}$ and $K$ a quadratic
(or rational) field of discriminant $D$ and Dirichlet character
$\chi$, if a prime $p$ is large enough compared to $D$, there
is a newform $f \in S_2(\Gamma_0(dp^2))$ with sign $(+1)$ with
respect to the AtkinLehner involution $w_{p^2}$ such that $L(f
\otimes \chi,1) \neq 0$. This result is obtained through an estimate
of a weighted sum of twists of $L$functions which generalises
a result of Ellenberg. It relies on the approximate functional
equation for the $L$functions $L(f \otimes \chi, \cdot)$ and
a Petersson trace formula restricted to AtkinLehner eigenspaces.
An application of this nonvanishing theorem will be given in
terms of existence of rank zero quotients of some twisted jacobians,
which generalises a result of Darmon and Merel.
Keywords:nonvanishing of $L$functions of modular forms, Petersson trace formula, rank zero quotients of jacobians Categories:14J15, 11F67 

3. CMB 2010 (vol 53 pp. 571)
 Trifković, Mak

Periods of Modular Forms and Imaginary Quadratic Base Change
Let $f$ be a classical newform of weight $2$ on the upper halfplane $\mathcal H^{(2)}$, $E$ the corresponding strong Weil curve, $K$ a class number one imaginary quadratic field, and $F$ the base change of $f$ to $K$. Under a mild hypothesis on the pair $(f,K)$, we prove that the period ratio $\Omega_E/(\sqrt{D}\Omega_F)$ is in $\mathbb Q$. Here $\Omega_F$ is the unique minimal positive period of $F$, and $\Omega_E$ the area of $E(\mathbb C)$. The claim is a specialization to base change forms of a conjecture proposed and numerically verified by Cremona and Whitley.
Category:11F67 

4. CMB 2005 (vol 48 pp. 535)