location:  Publications → journals
Search results

Search: MSC category 11E25 ( Sums of squares and representations by other particular quadratic forms )

 Expand all        Collapse all Results 1 - 4 of 4

1. CMB 2015 (vol 58 pp. 858)

Williams, Kenneth S.
 Ternary Quadratic Forms and Eta Quotients Let $\eta(z)$ $(z \in \mathbb{C},\;\operatorname{Im}(z)\gt 0)$ denote the Dedekind eta function. We use a recent product-to-sum formula in conjunction with conditions for the non-representability of integers by certain ternary quadratic forms to give explicitly 10 eta quotients $f(z):=\eta^{a(m_1)}(m_1 z)\cdots \eta^{{a(m_r)}}(m_r z)=\sum_{n=1}^{\infty}c(n)e^{2\pi i nz},\quad z \in \mathbb{C},\;\operatorname{Im}(z)\gt 0,$ such that the Fourier coefficients $c(n)$ vanish for all positive integers $n$ in each of infinitely many non-overlapping arithmetic progressions. For example, it is shown that for $f(z)=\eta^4(z)\eta^{9}(4z)\eta^{-2}(8z)$ we have $c(n)=0$ for all $n$ in each of the arithmetic progressions $\{16k+14\}_{k \geq 0}$, $\{64k+56\}_{k \geq 0}$, $\{256k+224\}_{k \geq 0}$, $\{1024k+896\}_{k \geq 0}$, $\ldots$. Keywords:Dedekind eta function, eta quotient, ternary quadratic forms, vanishing of Fourier coefficients, product-to-sum formulaCategories:11F20, 11E20, 11E25

2. CMB 2011 (vol 56 pp. 70)

Hrubeš, P.; Wigderson, A.; Yehudayoff, A.
 An Asymptotic Bound on the Composition Number of Integer Sums of Squares Formulas Let $\sigma_{\mathbb Z}(k)$ be the smallest $n$ such that there exists an identity $(x_1^2 + x_2^2 + \cdots + x_k^2) \cdot (y_1^2 + y_2^2 + \cdots + y_k^2) = f_1^2 + f_2^2 + \cdots + f_n^2,$ with $f_1,\dots,f_n$ being polynomials with integer coefficients in the variables $x_1,\dots,x_k$ and $y_1,\dots,y_k$. We prove that $\sigma_{\mathbb Z}(k) \geq \Omega(k^{6/5})$. Keywords:composition formulas, sums of squares, Radon-Hurwitz numberCategory:11E25

3. CMB 2009 (vol 52 pp. 481)

Alaca, Ay\c{s}e; Alaca, \c{S}aban; Williams, Kenneth S.
 Some Infinite Products of Ramanujan Type In his lost'' notebook, Ramanujan stated two results, which are equivalent to the identities $\prod_{n=1}^{\infty} \frac{(1-q^n)^5}{(1-q^{5n})} =1-5\sum_{n=1}^{\infty}\Big( \sum_{d \mid n} \qu{5}{d} d \Big) q^n$ and $q\prod_{n=1}^{\infty} \frac{(1-q^{5n})^5}{(1-q^{n})} =\sum_{n=1}^{\infty}\Big( \sum_{d \mid n} \qu{5}{n/d} d \Big) q^n.$ We give several more identities of this type. Keywords:Power series expansions of certain infinite productsCategories:11E25, 11F11, 11F27, 30B10

4. CMB 2008 (vol 51 pp. 3)

 Alaca, Ay\c{s}e; Alaca, \c{S}aban; Williams, Kenneth S.
 top of page | contact us | privacy | site map |