226. CMB 1997 (vol 40 pp. 376)
227. CMB 1997 (vol 40 pp. 364)
 Narayanan, Sridhar

On the nonvanishing of a certain class of Dirichlet series
In this paper,
we consider Dirichlet series with Euler products of the form
$F(s) = \prod_{p}{\bigl(1 + {a_p\over{p^s}}\bigr)}$ in $\Re(s) > 1$,
and which are regular in $\Re(s) \geq 1$ except for a pole of
order $m$ at $s = 1$.
We establish criteria for such a Dirichlet series to be nonvanishing
on the line of convergence. We also show that our results
can be applied to yield nonvanishing results for a subclass of the
Selberg class and the SatoTate conjecture.
Categories:11Mxx, 11M41 

228. CMB 1997 (vol 40 pp. 214)
 Mollin, R. A.; Goddard, B.; Coupland, S.

Polynomials of quadratic type producing strings of primes
The primary purpose of this paper is to provide necessary and
sufficient conditions for certain quadratic polynomials of negative
discriminant (which we call EulerRabinowitsch type), to produce
consecutive prime values for an initial range of input values less than
a Minkowski bound. This not only generalizes the classical work of
Frobenius, the later developments by Hendy, and the generalizations by
others, but also concludes the line of reasoning by providing a
complete list of all such primeproducing polynomials, under the
assumption of the generalized Riemann hypothesis ($\GRH$). We demonstrate
how this primeproduction phenomenon is related to the exponent of the
class group of the underlying complex quadratic field. Numerous
examples, and a remaining conjecture, are also given.
Categories:11R11, 11R09, 11R29 

229. CMB 1997 (vol 40 pp. 81)
 Movahhedi, A.; Salinier, A.

Une caractÃ©risation des corps satisfaisant le thÃ©orÃ¨me de l'axe principal
Resum\'e. On caract\'erise les corps $K$ satisfaisant le th\'eor\`eme
de l'axe principal \`a l'aide de propri\'et\'es des formes
carac\t\'erisation de ces m\^emes corps due \`a Waterhouse,
on retrouve \`a partir de l\`a, de fa\c{c}on \'el\'ementaire,
un r\'esultat de Becker selon lequel un pro$2$groupe qui se
r\'ealise comme groupe de Galois absolu d'un tel corps $K$ est
engendr\'e par des involutions.
ABSTRACT. We characterize general fields $K$, satisfying the
Principal Axis Theorem, by means of properties of trace forms of
the finite extensions of $K$. From this and Waterhouse's
characterization of the same fields, we rediscover, in quite an
elementary way, a result of Becker according to which a
pro$2$group which occurs as the absolute Galois group of such
a field $K$, is generated by
Categories:11E10, 12D15 

230. CMB 1997 (vol 40 pp. 72)