1. CMB 2011 (vol 55 pp. 297)
 Glasner, Eli

The Group $\operatorname{Aut}(\mu)$ is Roelcke Precompact
Following a similar result of Uspenskij on the unitary group of a
separable Hilbert space, we show that, with respect to the lower (or
Roelcke) uniform structure, the Polish group $G=
\operatorname{Aut}(\mu)$ of automorphisms of an atomless standard
Borel probability space $(X,\mu)$ is precompact. We identify the
corresponding compactification as the space of Markov operators on
$L_2(\mu)$ and deduce that the algebra of right and left uniformly
continuous functions, the algebra of weakly almost periodic functions,
and the algebra of Hilbert functions on $G$, i.e., functions on
$G$ arising from unitary representations, all coincide. Again
following Uspenskij, we also conclude that $G$ is totally minimal.
Keywords:Roelcke precompact, unitary group, measure preserving transformations, Markov operators, weakly almost periodic functions Categories:54H11, 22A05, 37B05, 54H20 

2. CMB 2005 (vol 48 pp. 340)
 Andruchow, Esteban

Short Geodesics of Unitaries in the $L^2$ Metric
Let $\M$ be a type II$_1$ von Neumann algebra, $\tau$ a trace in $\M$,
and $\l2$ the GNS Hilbert space of $\tau$. We regard the unitary group
$U_\M$ as a subset of $\l2$ and characterize the shortest smooth
curves joining two fixed unitaries in the $L^2$ metric. As a
consequence of this we obtain that $U_\M$, though a complete (metric)
topological group, is not an embedded riemannian submanifold of $\l2$
Keywords:unitary group, short geodesics, infinite dimensional riemannian manifolds. Categories:46L51, 58B10, 58B25 

3. CMB 2003 (vol 46 pp. 54)
 Cheung, WaiShun; Li, ChiKwong

Linear Maps Transforming the Unitary Group
Let $U(n)$ be the group of $n\times n$ unitary matrices. We show that if
$\phi$ is a linear transformation sending $U(n)$ into $U(m)$, then $m$ is
a multiple of $n$, and $\phi$ has the form
$$
A \mapsto V[(A\otimes I_s)\oplus (A^t \otimes I_{r})]W
$$
for some $V, W \in U(m)$. From this result, one easily deduces the
characterization of linear operators that map $U(n)$ into itself obtained
by Marcus. Further generalization of the main theorem is also discussed.
Keywords:linear map, unitary group, general linear group Category:15A04 
