1. CMB Online first
 Motegi, Kimihiko; Teragaito, Masakazu

Generalized torsion elements and biorderability of 3manifold groups
It is known that a biorderable group has no generalized torsion
element,
but the converse does not hold in general.
We conjecture that the converse holds for the fundamental groups
of $3$manifolds,
and verify the conjecture for nonhyperbolic, geometric $3$manifolds.
We also confirm the conjecture for some infinite families of
closed hyperbolic $3$manifolds.
In the course of the proof,
we prove that each standard generator of the Fibonacci group
$F(2, m)$ ($m \gt 2$) is a generalized torsion element.
Keywords:generalized torsion element, biordering, 3manifold group Categories:57M25, 57M05, 06F15, 20F05 

2. CMB 2015 (vol 59 pp. 182)
 Naylor, Geoff; Rolfsen, Dale

Generalized Torsion in Knot Groups
In a group, a nonidentity element is called
a generalized torsion element if some product of its conjugates
equals the identity. We show that for many classical knots one
can find generalized torsion in the fundamental group of its
complement, commonly called the knot group. It follows that
such a group is not biorderable. Examples include all torus
knots, the (hyperbolic) knot $5_2$ and algebraic knots in the
sense of Milnor.
Keywords:knot group, generalized torsion, ordered group Categories:57M27, 32S55, 29F60 

3. CMB 2013 (vol 57 pp. 225)
 Adamaszek, Michał

Small Flag Complexes with Torsion
We classify flag complexes on at most $12$ vertices with torsion in
the first homology group. The result is moderately computeraided.
As a consequence we confirm a folklore conjecture that the smallest
poset whose order complex is homotopy equivalent to the real
projective plane (and also the smallest poset with torsion in the
first homology group) has exactly $13$ elements.
Keywords:clique complex, order complex, homology, torsion, minimal model Categories:55U10, 06A11, 55P40, 5504, 0504 

4. CMB 2009 (vol 53 pp. 230)
5. CMB 2009 (vol 53 pp. 122)
 Mo, Xiaohuan; Zhou, Linfeng

A Class of Finsler Metrics with Bounded Cartan Torsion
In this paper, we find a class of $(\alpha,\beta)$ metrics which have a bounded Cartan torsion. This class contains all Randers metrics. Furthermore, we give some applications and obtain two corollaries about curvature of this metrics.
Keywords:Finsler manifold, $(\alpha,\beta)$ metric, Cartan torsion, Rquadratic, flag curvature Category:58E20 

6. CMB 2007 (vol 50 pp. 567)
 Joshi, Kirti

Exotic Torsion, Frobenius Splitting and the Slope Spectral Sequence
In this paper we show that any Frobenius split, smooth, projective
threefold over a perfect field of characteristic $p>0$ is
HodgeWitt. This is proved by generalizing to the case of
threefolds a wellknown criterion due to N.~Nygaard for surfaces to be HodgeWitt.
We also show that the second crystalline
cohomology of any smooth, projective Frobenius split variety does
not have any exotic torsion. In the last two sections we include
some applications.
Keywords:threefolds, Frobenius splitting, HodgeWitt, crystalline cohomology, slope spectral sequence, exotic torsion Categories:14F30, 14J30 

7. CMB 2006 (vol 49 pp. 55)
 Dubois, Jérôme

Non Abelian Twisted Reidemeister Torsion for Fibered Knots
In this article, we give an explicit formula to compute the
non abelian twisted signdeter\mined Reidemeister torsion of the
exterior of a fibered knot in terms of its monodromy. As an
application, we give explicit formulae for the non abelian
Reidemeister torsion of torus knots and of the figure eight knot.
Keywords:Reidemeister torsion, Fibered knots, Knot groups, Representation space, $\SU$, $\SL$, Adjoint representation, Monodromy Categories:57Q10, 57M27, 57M25 

8. CMB 2002 (vol 45 pp. 337)
 Chen, Imin

Surjectivity of $\mod\ell$ Representations Attached to Elliptic Curves and Congruence Primes
For a modular elliptic curve $E/\mathbb{Q}$, we show a number of
links between the primes $\ell$ for which the mod $\ell$
representation of $E/\mathbb{Q}$ has projective dihedral image and
congruence primes for the newform associated to $E/\mathbb{Q}$.
Keywords:torsion points of elliptic curves, Galois representations, congruence primes, Serre tori, grossencharacters, nonsplit Cartan Categories:11G05, 11F80 

9. CMB 1999 (vol 42 pp. 274)
 Dădărlat, Marius; Eilers, Søren

The Bockstein Map is Necessary
We construct two nonisomorphic nuclear, stably finite,
real rank zero $C^\ast$algebras $E$ and $E'$ for which
there is an isomorphism of ordered groups
$\Theta\colon \bigoplus_{n \ge 0} K_\bullet(E;\ZZ/n) \to
\bigoplus_{n \ge 0} K_\bullet(E';\ZZ/n)$ which is compatible
with all the coefficient transformations. The $C^\ast$algebras
$E$ and $E'$ are not isomorphic since there is no $\Theta$
as above which is also compatible with the Bockstein operations.
By tensoring with Cuntz's algebra $\OO_\infty$ one obtains a pair
of nonisomorphic, real rank zero, purely infinite $C^\ast$algebras
with similar properties.
Keywords:$K$theory, torsion coefficients, natural transformations, Bockstein maps, $C^\ast$algebras, real rank zero, purely infinite, classification Categories:46L35, 46L80, 19K14 
