1. CMB Online first
 Tran, Anh T.; Yamaguchi, Yoshikazu

The asymptotics of the higher dimensional Reidemeister torsion for exceptional surgeries along twist knots
We determine the asymptotic behavior of the higher dimensional
Reidemeister torsion for
the graph manifolds obtained by exceptional surgeries along
twist knots.
We show that all irreducible
$\operatorname{SL}_2(\mathbb{C})$representations of the graph
manifold
are induced by irreducible metabelian representations of the
twist knot group.
We also give the set of the limits of the leading coefficients
in the higher dimensional Reidemeister torsion explicitly.
Keywords:Reidemeister torsion, graph manifold, asymptotic behavior, exceptional surgery Categories:57M27, 57M50 

2. CMB Online first


Leftorderable fundamental group and Dehn surgery on the knot $5_2$
We show that the resulting manifold by $r$surgery on the knot $5_2$, which is
the twobridge knot corresponding to the rational number $3/7$, has leftorderable
fundamental group if the slope $r$ satisfies $0\le r \le 4$.
Keywords:leftordering, Dehn surgery Categories:57M25, 06F15 

3. CMB Online first


Leftorderable fundamental group and Dehn surgery on the knot $5_2$
We show that the resulting manifold by $r$surgery on the knot $5_2$, which is
the twobridge knot corresponding to the rational number $3/7$, has leftorderable
fundamental group if the slope $r$ satisfies $0\le r \le 4$.
Keywords:leftordering, Dehn surgery Categories:57M25, 06F15 

4. CMB 2013 (vol 57 pp. 310)
5. CMB 2012 (vol 56 pp. 850)
 Teragaito, Masakazu

Leftorderability and Exceptional Dehn Surgery on Twist Knots
We show that any exceptional nontrivial Dehn surgery on a twist knot, except the trefoil,
yields a $3$manifold whose fundamental group is leftorderable.
This is a generalization of a result of Clay, Lidman and Watson, and
also gives a new supporting evidence for a conjecture of Boyer, Gordon and Watson.
Keywords:leftordering, twist knot, Dehn surgery Categories:57M25, 06F15 

6. CMB 2011 (vol 54 pp. 283)
7. CMB 2010 (vol 54 pp. 556)
 Teragaito, Masakazu

Cyclic Surgery Between Toroidal Surgeries
We show that there is an infinite family of hyperbolic knots such that
each knot admits a cyclic surgery $m$ whose adjacent surgeries $m1$
and $m+1$ are toroidal. This gives an affirmative answer to a
question asked by Boyer and Zhang.
Keywords:cyclic surgery, toroidal surgery Category:57M25 

8. CMB 2008 (vol 51 pp. 508)
 Cavicchioli, Alberto; Spaggiari, Fulvia

A Result in Surgery Theory
We study the topological $4$dimensional surgery problem
for a closed connected orientable
topological $4$manifold $X$ with vanishing
second homotopy and $\pi_1(X)\cong A * F(r)$, where $A$ has
one end and $F(r)$ is the free group of rank $r\ge 1$.
Our result is related to a theorem of Krushkal and Lee, and
depends on the validity of the Novikov conjecture for
such fundamental groups.
Keywords:fourmanifolds, homotopy type, obstruction theory, homology with local coefficients, surgery, normal invariant, assembly map Categories:57N65, 57R67, 57Q10 

9. CMB 2006 (vol 49 pp. 624)
 Teragaito, Masakazu

On NonIntegral Dehn Surgeries Creating NonOrientable Surfaces
For a nontrivial knot in the $3$sphere,
only integral Dehn surgery can create a closed $3$manifold containing a projective plane.
If we restrict ourselves to hyperbolic knots, the corresponding claim for a Klein bottle is still true.
In contrast to these, we show that nonintegral surgery on a hyperbolic knot
can create a closed nonorientable surface of any genus greater than two.
Keywords:knot, Dehn surgery, nonorientable surface Category:57M25 

10. CMB 2003 (vol 46 pp. 356)