Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword rough kernel

  Expand all        Collapse all Results 1 - 6 of 6

1. CMB Online first

Ding, Yong; Lai, Xudong
On a singular integral of Christ-Journé type with homogeneous kernel
In this paper, we prove that the following singular integral defined by $$T_{\Omega,a}f(x)=\operatorname{p.v.}\int_{\mathbb{R}^{d}}\frac{\Omega(x-y)}{|x-y|^d}\cdot m_{x,y}a\cdot f(y)dy$$ is bounded on $L^p(\mathbb{R}^d)$ for $1\lt p\lt \infty$ and is of weak type (1,1), where $\Omega\in L\log^+L(\mathbb{S}^{d-1})$ and $m_{x,y}a=:\int_0^1a(sx+(1-s)y)ds$ with $a\in L^\infty(\mathbb{R}^d)$ satisfying some restricted conditions.

Keywords:Calderón commutator, rough kernel, weak type (1,1)

2. CMB 2016 (vol 60 pp. 131)

Gürbüz, Ferit
Some Estimates for Generalized Commutators of Rough Fractional Maximal and Integral Operators on Generalized Weighted Morrey Spaces
In this paper, we establish $BMO$ estimates for generalized commutators of rough fractional maximal and integral operators on generalized weighted Morrey spaces, respectively.

Keywords:fractional integral operator, fractional maximal operator, rough kernel, generalized commutator, $A(p,q)$ weight, generalized weighted Morrey space
Categories:42B20, 42B25

3. CMB 2010 (vol 54 pp. 100)

Fan, Dashan; Wu, Huoxiong
On the Generalized Marcinkiewicz Integral Operators with Rough Kernels
A class of generalized Marcinkiewicz integral operators is introduced, and, under rather weak conditions on the integral kernels, the boundedness of such operators on $L^p$ and Triebel--Lizorkin spaces is established.

Keywords: Marcinkiewicz integral, Littlewood--Paley theory, Triebel--Lizorkin space, rough kernel, product domain
Categories:42B20, , , , , 42B25, 42B30, 42B99

4. CMB 2009 (vol 52 pp. 521)

Chen, Yanping; Ding, Yong
The Parabolic Littlewood--Paley Operator with Hardy Space Kernels
In this paper, we give the $L^p$ boundedness for a class of parabolic Littlewood--Paley $g$-function with its kernel function $\Omega$ is in the Hardy space $H^1(S^{n-1})$.

Keywords:parabolic Littlewood-Paley operator, Hardy space, rough kernel
Categories:42B20, 42B25

5. CMB 2006 (vol 49 pp. 3)

Al-Salman, Ahmad
On a Class of Singular Integral Operators With Rough Kernels
In this paper, we study the $L^p$ mapping properties of a class of singular integral operators with rough kernels belonging to certain block spaces. We prove that our operators are bounded on $L^p$ provided that their kernels satisfy a size condition much weaker than that for the classical Calder\'{o}n--Zygmund singular integral operators. Moreover, we present an example showing that our size condition is optimal. As a consequence of our results, we substantially improve a previously known result on certain maximal functions.

Keywords:Singular integrals, Rough kernels, Square functions,, Maximal functions, Block spaces
Categories:42B20, 42B15, 42B25

6. CMB 1998 (vol 41 pp. 404)

Al-Hasan, Abdelnaser J.; Fan, Dashan
$L^p$-boundedness of a singular integral operator
Let $b(t)$ be an $L^\infty$ function on $\bR$, $\Omega (\,y')$ be an $H^1$ function on the unit sphere satisfying the mean zero property (1) and $Q_m(t)$ be a real polynomial on $\bR$ of degree $m$ satisfying $Q_m(0)=0$. We prove that the singular integral operator $$ T_{Q_m,b} (\,f) (x)=p.v. \int_\bR^n b(|y|) \Omega(\,y) |y|^{-n} f \left( x-Q_m (|y|) y' \right) \,dy $$ is bounded in $L^p (\bR^n)$ for $1
Keywords:singular integral, rough kernel, Hardy space

© Canadian Mathematical Society, 2017 :