location:  Publications → journals
Search results

Search: All articles in the CMB digital archive with keyword rational points

 Expand all        Collapse all Results 1 - 3 of 3

1. CMB 2011 (vol 56 pp. 500)

Browning, T. D.
 The Lang--Weil Estimate for Cubic Hypersurfaces An improved estimate is provided for the number of $\mathbb{F}_q$-rational points on a geometrically irreducible, projective, cubic hypersurface that is not equal to a cone. Keywords:cubic hypersurface, rational points, finite fieldsCategories:11G25, 14G15

2. CMB 2011 (vol 55 pp. 193)

Ulas, Maciej
 Rational Points in Arithmetic Progressions on $y^2=x^n+k$ Let $C$ be a hyperelliptic curve given by the equation $y^2=f(x)$ for $f\in\mathbb{Z}[x]$ without multiple roots. We say that points $P_{i}=(x_{i}, y_{i})\in C(\mathbb{Q})$ for $i=1,2,\dots, m$ are in arithmetic progression if the numbers $x_{i}$ for $i=1,2,\dots, m$ are in arithmetic progression. In this paper we show that there exists a polynomial $k\in\mathbb{Z}[t]$ with the property that on the elliptic curve $\mathcal{E}': y^2=x^3+k(t)$ (defined over the field $\mathbb{Q}(t)$) we can find four points in arithmetic progression that are independent in the group of all $\mathbb{Q}(t)$-rational points on the curve $\mathcal{E}'$. In particular this result generalizes earlier results of Lee and V\'{e}lez. We also show that if $n\in\mathbb{N}$ is odd, then there are infinitely many $k$'s with the property that on curves $y^2=x^n+k$ there are four rational points in arithmetic progressions. In the case when $n$ is even we can find infinitely many $k$'s such that on curves $y^2=x^n+k$ there are six rational points in arithmetic progression. Keywords:arithmetic progressions, elliptic curves, rational points on hyperelliptic curvesCategory:11G05

3. CMB 2004 (vol 47 pp. 398)

McKinnon, David
 A Reduction of the Batyrev-Manin Conjecture for Kummer Surfaces Let $V$ be a $K3$ surface defined over a number field $k$. The Batyrev-Manin conjecture for $V$ states that for every nonempty open subset $U$ of $V$, there exists a finite set $Z_U$ of accumulating rational curves such that the density of rational points on $U-Z_U$ is strictly less than the density of rational points on $Z_U$. Thus, the set of rational points of $V$ conjecturally admits a stratification corresponding to the sets $Z_U$ for successively smaller sets $U$. In this paper, in the case that $V$ is a Kummer surface, we prove that the Batyrev-Manin conjecture for $V$ can be reduced to the Batyrev-Manin conjecture for $V$ modulo the endomorphisms of $V$ induced by multiplication by $m$ on the associated abelian surface $A$. As an application, we use this to show that given some restrictions on $A$, the set of rational points of $V$ which lie on rational curves whose preimages have geometric genus 2 admits a stratification of Keywords:rational points, Batyrev-Manin conjecture, Kummer, surface, rational curve, abelian surface, heightCategories:11G35, 14G05
 top of page | contact us | privacy | site map |