1. CMB 2013 (vol 57 pp. 364)
 Li, Lei; Wang, YaShu

How Lipschitz Functions Characterize the Underlying Metric Spaces
Let $X, Y$ be metric spaces and $E, F$ be Banach spaces. Suppose that
both $X,Y$ are realcompact, or both $E,F$ are realcompact.
The zero set of a vectorvalued function $f$ is denoted by $z(f)$.
A linear bijection $T$ between local or generalized Lipschitz vectorvalued function spaces
is said to preserve zeroset containments or nonvanishing functions
if
\[z(f)\subseteq z(g)\quad\Longleftrightarrow\quad z(Tf)\subseteq z(Tg),\]
or
\[z(f) = \emptyset\quad \Longleftrightarrow\quad z(Tf)=\emptyset,\]
respectively.
Every zeroset containment preserver, and every nonvanishing function preserver when
$\dim E =\dim F\lt +\infty$, is a weighted composition operator
$(Tf)(y)=J_y(f(\tau(y)))$.
We show that the map $\tau\colon Y\to X$ is a locally (little) Lipschitz homeomorphism.
Keywords:(generalized, locally, little) Lipschitz functions, zeroset containment preservers, biseparating maps Categories:46E40, 54D60, 46E15 

2. CMB 2010 (vol 54 pp. 141)
 Kim, Sang Og; Park, Choonkil

Linear Maps on $C^*$Algebras Preserving the Set of Operators that are Invertible in $\mathcal{A}/\mathcal{I}$
For $C^*$algebras $\mathcal{A}$ of real rank zero, we describe
linear maps $\phi$ on $\mathcal{A}$ that are surjective up to ideals
$\mathcal{I}$, and $\pi(A)$ is invertible in $\mathcal{A}/\mathcal{I}$ if and only if
$\pi(\phi(A))$ is invertible in $\mathcal{A}/\mathcal{I}$, where $A\in\mathcal{A}$ and
$\pi:\mathcal{A}\to\mathcal{A}/\mathcal{I}$ is the quotient map. We also consider similar
linear maps preserving zero products on the Calkin algebra.
Keywords:preservers, Jordan automorphisms, invertible operators, zero products Categories:47B48, 47A10, 46H10 

3. CMB 2005 (vol 48 pp. 267)
 Rodman, Leiba; Šemrl, Peter; Sourour, Ahmed R.

Continuous Adjacency Preserving Maps on Real Matrices
It is proved that every adjacency preserving continuous map
on the vector space of real matrices of fixed size, is either a
bijective affine tranformation
of the form $ A \mapsto PAQ+R$, possibly followed by the transposition if
the matrices are of square size, or its range is contained
in a linear subspace consisting of matrices of rank at most one
translated by some matrix $R$. The result
extends previously known
theorems where the map was assumed to be also injective.
Keywords:adjacency of matrices, continuous preservers, affine transformations Categories:15A03, 15A04. 
