Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword locally

  Expand all        Collapse all Results 1 - 18 of 18

1. CMB Online first

Haralampidou, Marina; Oudadess, Mohamed; Palacios, Lourdes; Signoret, Carlos
A characterization of $C^{\ast}$-normed algebras via positive functionals
We give a characterization of $C^{\ast}$-normed algebras, among certain involutive normed ones. This is done through the existence of enough specific positive functionals. The same question is also examined in some non normed (topological) algebras.

Keywords:$C^{\ast}$-normed algebra, $C^*$-algebra, (pre-)locally $C^*$-algebra, pre-$C^*$-bornological algebra, positive functional, locally uniformly $A$-convex algebra, perfect locally $m$-convex algebra, $C^*$-(resp. $^*$-) subnormable algebra
Categories:46H05, 46K05

2. CMB 2016 (vol 60 pp. 122)

Ghanei, Mohammad Reza; Nasr-Isfahani, Rasoul; Nemati, Mehdi
A Homological Property and Arens Regularity of Locally Compact Quantum Groups
We characterize two important notions of amenability and compactness of a locally compact quantum group ${\mathbb G}$ in terms of certain homological properties. For this, we show that ${\mathbb G}$ is character amenable if and only if it is both amenable and co-amenable. We finally apply our results to Arens regularity problems of the quantum group algebra $L^1({\mathbb G})$; in particular, we improve an interesting result by Hu, Neufang and Ruan.

Keywords:amenability, Arens regularity, co-amenability, locally compact quantum group, homological property
Categories:46L89, 43A07, 46H20, 46M10, 58B32

3. CMB 2016 (vol 59 pp. 508)

De Nicola, Antonio; Yudin, Ivan
Generalized Goldberg Formula
In this paper we prove a useful formula for the graded commutator of the Hodge codifferential with the left wedge multiplication by a fixed $p$-form acting on the de Rham algebra of a Riemannian manifold. Our formula generalizes a formula stated by Samuel I. Goldberg for the case of 1-forms. As first examples of application we obtain new identities on locally conformally Kähler manifolds and quasi-Sasakian manifolds. Moreover, we prove that under suitable conditions a certain subalgebra of differential forms in a compact manifold is quasi-isomorphic as a CDGA to the full de Rham algebra.

Keywords:graded commutator, Hodge codifferential, Hodge laplacian, de Rham cohomology, locally conformal Kaehler manifold, quasi-Sasakian manifold
Categories:53C25, 53D35

4. CMB 2014 (vol 57 pp. 579)

Larson, Paul; Tall, Franklin D.
On the Hereditary Paracompactness of Locally Compact, Hereditarily Normal Spaces
We establish that if it is consistent that there is a supercompact cardinal, then it is consistent that every locally compact, hereditarily normal space which does not include a perfect pre-image of $\omega_1$ is hereditarily paracompact.

Keywords:locally compact, hereditarily normal, paracompact, Axiom R, PFA$^{++}$
Categories:54D35, 54D15, 54D20, 54D45, 03E65, 03E35

5. CMB 2014 (vol 57 pp. 803)

Gabriyelyan, S. S.
Free Locally Convex Spaces and the $k$-space Property
Let $L(X)$ be the free locally convex space over a Tychonoff space $X$. Then $L(X)$ is a $k$-space if and only if $X$ is a countable discrete space. We prove also that $L(D)$ has uncountable tightness for every uncountable discrete space $D$.

Keywords:free locally convex space, $k$-space, countable tightness
Categories:46A03, 54D50, 54A25

6. CMB 2013 (vol 57 pp. 364)

Li, Lei; Wang, Ya-Shu
How Lipschitz Functions Characterize the Underlying Metric Spaces
Let $X, Y$ be metric spaces and $E, F$ be Banach spaces. Suppose that both $X,Y$ are realcompact, or both $E,F$ are realcompact. The zero set of a vector-valued function $f$ is denoted by $z(f)$. A linear bijection $T$ between local or generalized Lipschitz vector-valued function spaces is said to preserve zero-set containments or nonvanishing functions if \[z(f)\subseteq z(g)\quad\Longleftrightarrow\quad z(Tf)\subseteq z(Tg),\] or \[z(f) = \emptyset\quad \Longleftrightarrow\quad z(Tf)=\emptyset,\] respectively. Every zero-set containment preserver, and every nonvanishing function preserver when $\dim E =\dim F\lt +\infty$, is a weighted composition operator $(Tf)(y)=J_y(f(\tau(y)))$. We show that the map $\tau\colon Y\to X$ is a locally (little) Lipschitz homeomorphism.

Keywords:(generalized, locally, little) Lipschitz functions, zero-set containment preservers, biseparating maps
Categories:46E40, 54D60, 46E15

7. CMB 2013 (vol 57 pp. 546)

Kalantar, Mehrdad
Compact Operators in Regular LCQ Groups
We show that a regular locally compact quantum group $\mathbb{G}$ is discrete if and only if $\mathcal{L}^{\infty}(\mathbb{G})$ contains non-zero compact operators on $\mathcal{L}^{2}(\mathbb{G})$. As a corollary we classify all discrete quantum groups among regular locally compact quantum groups $\mathbb{G}$ where $\mathcal{L}^{1}(\mathbb{G})$ has the Radon--Nikodym property.

Keywords:locally compact quantum groups, regularity, compact operators

8. CMB 2012 (vol 57 pp. 424)

Sołtan, Piotr M.; Viselter, Ami
A Note on Amenability of Locally Compact Quantum Groups
In this short note we introduce a notion called ``quantum injectivity'' of locally compact quantum groups, and prove that it is equivalent to amenability of the dual. Particularly, this provides a new characterization of amenability of locally compact groups.

Keywords:amenability, conditional expectation, injectivity, locally compact quantum group, quantum injectivity
Categories:20G42, 22D25, 46L89

9. CMB 2012 (vol 56 pp. 606)

Mazorchuk, Volodymyr; Zhao, Kaiming
Characterization of Simple Highest Weight Modules
We prove that for simple complex finite dimensional Lie algebras, affine Kac-Moody Lie algebras, the Virasoro algebra and the Heisenberg-Virasoro algebra, simple highest weight modules are characterized by the property that all positive root elements act on these modules locally nilpotently. We also show that this is not the case for higher rank Virasoro and for Heisenberg algebras.

Keywords:Lie algebra, highest weight module, triangular decomposition, locally nilpotent action
Categories:17B20, 17B65, 17B66, 17B68

10. CMB 2011 (vol 55 pp. 783)

Motallebi, M. R.; Saiflu, H.
Products and Direct Sums in Locally Convex Cones
In this paper we define lower, upper, and symmetric completeness and discuss closure of the sets in product and direct sums. In particular, we introduce suitable bases for these topologies, which leads us to investigate completeness of the direct sum and its components. Some results obtained about $X$-topologies and polars of the neighborhoods.

Keywords:product and direct sum, duality, locally convex cone
Categories:20K25, 46A30, 46A20

11. CMB 2011 (vol 56 pp. 434)

Wnuk, Witold
Some Remarks on the Algebraic Sum of Ideals and Riesz Subspaces
Following ideas used by Drewnowski and Wilansky we prove that if $I$ is an infinite dimensional and infinite codimensional closed ideal in a complete metrizable locally solid Riesz space and $I$ does not contain any order copy of $\mathbb R^{\mathbb N}$ then there exists a closed, separable, discrete Riesz subspace $G$ such that the topology induced on $G$ is Lebesgue, $I \cap G = \{0\}$, and $I + G$ is not closed.

Keywords:locally solid Riesz space, Riesz subspace, ideal, minimal topological vector space, Lebesgue property
Categories:46A40, 46B42, 46B45

12. CMB 2011 (vol 55 pp. 586)

Nie, Zhaohu
On Sha's Secondary Chern-Euler Class
For a manifold with boundary, the restriction of Chern's transgression form of the Euler curvature form over the boundary is closed. Its cohomology class is called the secondary Chern-Euler class and was used by Sha to formulate a relative Poincaré-Hopf theorem under the condition that the metric on the manifold is locally product near the boundary. We show that the secondary Chern-Euler form is exact away from the outward and inward unit normal vectors of the boundary by explicitly constructing a transgression form. Using Stokes' theorem, this evaluates the boundary term in Sha's relative Poincaré-Hopf theorem in terms of more classical indices of the tangential projection of a vector field. This evaluation in particular shows that Sha's relative Poincaré-Hopf theorem is equivalent to the more classical law of vector fields.

Keywords:transgression, secondary Chern-Euler class, locally product metric, law of vector fields
Categories:57R20, 57R25

13. CMB 2011 (vol 54 pp. 244)

Daniel, D. ; Nikiel, J.; Treybig, L. B.; Tuncali, H. M.; Tymchatyn, E. D.
Homogeneous Suslinian Continua
A continuum is said to be Suslinian if it does not contain uncountably many mutually exclusive non-degenerate subcontinua. Fitzpatrick and Lelek have shown that a metric Suslinian continuum $X$ has the property that the set of points at which $X$ is connected im kleinen is dense in $X$. We extend their result to Hausdorff Suslinian continua and obtain a number of corollaries. In particular, we prove that a homogeneous, non-degenerate, Suslinian continuum is a simple closed curve and that each separable, non-degenerate, homogenous, Suslinian continuum is metrizable.

Keywords:connected im kleinen, homogeneity, Suslinian, locally connected continuum
Categories:54F15, 54C05, 54F05, 54F50

14. CMB 2009 (vol 52 pp. 535)

Daigle, Daniel; Kaliman, Shulim
A Note on Locally Nilpotent Derivations\\ and Variables of $k[X,Y,Z]$
We strengthen certain results concerning actions of $(\Comp,+)$ on $\Comp^{3}$ and embeddings of $\Comp^{2}$ in $\Comp^{3}$, and show that these results are in fact valid over any field of characteristic zero.

Keywords:locally nilpotent derivations, group actions, polynomial automorphisms, variable, affine space
Categories:14R10, 14R20, 14R25, 13N15

15. CMB 2008 (vol 51 pp. 310)

Witbooi, P. J.
Relative Homotopy in Relational Structures
The homotopy groups of a finite partially ordered set (poset) can be described entirely in the context of posets, as shown in a paper by B. Larose and C. Tardif. In this paper we describe the relative version of such a homotopy theory, for pairs $(X,A)$ where $X$ is a poset and $A$ is a subposet of $X$. We also prove some theorems on the relevant version of the notion of weak homotopy equivalences for maps of pairs of such objects. We work in the category of reflexive binary relational structures which contains the posets as in the work of Larose and Tardif.

Keywords:binary reflexive relational structure, relative homotopy group, exact sequence, locally finite space, weak homotopy equivalence
Categories:55Q05, 54A05;, 18B30

16. CMB 2007 (vol 50 pp. 356)

Filippakis, Michael E.; Papageorgiou, Nikolaos S.
Existence of Positive Solutions for Nonlinear Noncoercive Hemivariational Inequalities
In this paper we investigate the existence of positive solutions for nonlinear elliptic problems driven by the $p$-Laplacian with a nonsmooth potential (hemivariational inequality). Under asymptotic conditions that make the Euler functional indefinite and incorporate in our framework the asymptotically linear problems, using a variational approach based on nonsmooth critical point theory, we obtain positive smooth solutions. Our analysis also leads naturally to multiplicity results.

Keywords:$p$-Laplacian, locally Lipschitz potential, nonsmooth critical point theory, principal eigenvalue, positive solutions, nonsmooth Mountain Pass Theorem
Categories:35J20, 35J60, 35J85

17. CMB 2005 (vol 48 pp. 195)

Daniel, D.; Nikiel, J.; Treybig, L. B.; Tuncali, H. M.; Tymchatyn, E. D.
On Suslinian Continua
A continuum is said to be Suslinian if it does not contain uncountably many mutually exclusive nondegenerate subcontinua. We prove that Suslinian continua are perfectly normal and rim-metrizable. Locally connected Suslinian continua have weight at most $\omega_1$ and under appropriate set-theoretic conditions are metrizable. Non-separable locally connected Suslinian continua are rim-finite on some open set.

Keywords:Suslinian continuum, Souslin line, locally connected, rim-metrizable,, perfectly normal, rim-finite
Categories:54F15, 54D15, 54F50

18. CMB 2004 (vol 47 pp. 343)

Drensky, Vesselin; Hammoudi, Lakhdar
Combinatorics of Words and Semigroup Algebras Which Are Sums of Locally Nilpotent Subalgebras
We construct new examples of non-nil algebras with any number of generators, which are direct sums of two locally nilpotent subalgebras. Like all previously known examples, our examples are contracted semigroup algebras and the underlying semigroups are unions of locally nilpotent subsemigroups. In our constructions we make more transparent than in the past the close relationship between the considered problem and combinatorics of words.

Keywords:locally nilpotent rings,, nil rings, locally nilpotent semigroups,, semigroup algebras, monomial algebras, infinite words
Categories:16N40, 16S15, 20M05, 20M25, 68R15

© Canadian Mathematical Society, 2017 :