location:  Publications → journals
Search results

Search: All articles in the CMB digital archive with keyword integral operator

 Expand all        Collapse all Results 1 - 5 of 5

1. CMB Online first

Rocha, Pablo Alejandro
 A remark on certain integral operators of fractional type For $m, n \in \mathbb{N}$, $1\lt m \leq n$, we write $n = n_1 + \dots + n_m$ where $\{ n_1, \dots, n_m \} \subset \mathbb{N}$. Let $A_1, \dots, A_m$ be $n \times n$ singular real matrices such that $\bigoplus_{i=1}^{m} \bigcap_{1\leq j \neq i \leq m} \mathcal{N}_j = \mathbb{R}^{n},$ where $\mathcal{N}_j = \{ x : A_j x = 0 \}$, $dim(\mathcal{N}_j)=n-n_j$ and $A_1+ \dots+ A_m$ is invertible. In this paper we study integral operators of the form $T_{r}f(x)= \int_{\mathbb{R}^{n}} \, |x-A_1 y|^{-n_1 + \alpha_1} \cdots |x-A_m y|^{-n_m + \alpha_m} f(y) \, dy,$ $n_1 + \dots + n_m = n$, $\frac{\alpha_1}{n_1} = \dots = \frac{\alpha_m}{n_m}=r$, $0 \lt r \lt 1$, and the matrices $A_i$'s are as above. We obtain the $H^{p}(\mathbb{R}^{n})-L^{q}(\mathbb{R}^{n})$ boundedness of $T_r$ for $0\lt p\lt \frac{1}{r}$ and $\frac{1}{q}=\frac{1}{p} - r$. Keywords:integral operator, Hardy spaceCategories:42B20, 42B30

2. CMB 2016 (vol 60 pp. 131)

Gürbüz, Ferit
 Some Estimates for Generalized Commutators of Rough Fractional Maximal and Integral Operators on Generalized Weighted Morrey Spaces In this paper, we establish $BMO$ estimates for generalized commutators of rough fractional maximal and integral operators on generalized weighted Morrey spaces, respectively. Keywords:fractional integral operator, fractional maximal operator, rough kernel, generalized commutator, $A(p,q)$ weight, generalized weighted Morrey spaceCategories:42B20, 42B25

3. CMB 2014 (vol 58 pp. 19)

Chen, Jiecheng; Hu, Guoen
 Compact Commutators of Rough Singular Integral Operators Let $b\in \mathrm{BMO}(\mathbb{R}^n)$ and $T_{\Omega}$ be the singular integral operator with kernel $\frac{\Omega(x)}{|x|^n}$, where $\Omega$ is homogeneous of degree zero, integrable and has mean value zero on the unit sphere $S^{n-1}$. In this paper, by Fourier transform estimates and approximation to the operator $T_{\Omega}$ by integral operators with smooth kernels, it is proved that if $b\in \mathrm{CMO}(\mathbb{R}^n)$ and $\Omega$ satisfies a certain minimal size condition, then the commutator generated by $b$ and $T_{\Omega}$ is a compact operator on $L^p(\mathbb{R}^n)$ for appropriate index $p$. The associated maximal operator is also considered. Keywords:commutator,singular integral operator, compact operator, maximal operatorCategory:42B20

4. CMB 2011 (vol 56 pp. 593)

Liu, Congwen; Zhou, Lifang
 On the $p$-norm of an Integral Operator in the Half Plane We give a partial answer to a conjecture of DostaniÄ on the determination of the norm of a class of integral operators induced by the weighted Bergman projection in the upper half plane. Keywords:Bergman projection, integral operator, $L^p$-norm, the upper half planeCategories:47B38, 47G10, 32A36

5. CMB 2008 (vol 51 pp. 618)

Valmorin, V.
 Vanishing Theorems in Colombeau Algebras of Generalized Functions Using a canonical linear embedding of the algebra ${\mathcal G}^{\infty}(\Omega)$ of Colombeau generalized functions in the space of $\overline{\C}$-valued $\C$-linear maps on the space ${\mathcal D}(\Omega)$ of smooth functions with compact support, we give vanishing conditions for functions and linear integral operators of class ${\mathcal G}^\infty$. These results are then applied to the zeros of holomorphic generalized functions in dimension greater than one. Keywords:Colombeau generalized functions, linear integral operators, generalized holomorphic functionsCategories:32A60, 45P05, 46F30
 top of page | contact us | privacy | site map |