1. CMB Online first
 MirandaNeto, Cleto Brasileiro

A moduletheoretic characterization of algebraic hypersurfaces
In this note we prove the following surprising characterization:
if
$X\subset {\mathbb A}^n$ is an (embedded, nonempty, proper)
algebraic variety defined over a
field $k$ of characteristic zero, then $X$ is a hypersurface
if and only if the module $T_{{\mathcal O}_{{\mathbb
A}^n}/k}(X)$ of logarithmic vector fields of
$X$ is a reflexive ${\mathcal
O}_{{\mathbb A}^n}$module. As a consequence of this result,
we derive that if $T_{{\mathcal O}_{{\mathbb A}^n}/k}(X)$ is a
free ${\mathcal
O}_{{\mathbb A}^n}$module, which is shown to be equivalent
to the freeness of the $t$th exterior power of $T_{{\mathcal O}_{{\mathbb
A}^n}/k}(X)$ for some (in fact, any) $t\leq n$, then necessarily
$X$ is a Saito free divisor.
Keywords:hypersurface, logarithmic vector field, logarithmic derivation, free divisor Categories:14J70, 13N15, 32S22, 13C05, 13C10, 14N20, , , , , 14C20, 32M25 

2. CMB Online first
 Reichstein, Zinovy; Vistoli, Angelo

On the dimension of the locus of determinantal hypersurfaces
The characteristic polynomial $P_A(x_0, \dots,
x_r)$
of an $r$tuple $A := (A_1, \dots, A_r)$ of $n \times n$matrices
is
defined as
\[ P_A(x_0, \dots, x_r) := \det(x_0 I + x_1 A_1 + \dots + x_r
A_r) \, . \]
We show that if $r \geqslant 3$
and $A := (A_1, \dots, A_r)$ is an $r$tuple of $n \times n$matrices in general position,
then up to conjugacy, there are only finitely many $r$tuples
$A' := (A_1', \dots, A_r')$ such that $p_A = p_{A'}$. Equivalently,
the locus of determinantal hypersurfaces of degree $n$ in $\mathbf{P}^r$
is irreducible of dimension $(r1)n^2 + 1$.
Keywords:determinantal hypersurface, matrix invariant, $q$binomial coefficient Categories:14M12, 15A22, 05A10 

3. CMB 2016 (vol 59 pp. 813)
4. CMB 2016 (vol 59 pp. 721)
 Pérez, Juan de Dios; Lee, Hyunjin; Suh, Young Jin; Woo, Changhwa

Real Hypersurfaces in Complex Twoplane Grassmannians with Reeb Parallel Ricci Tensor in the GTW Connection
There are several kinds of classification problems for real hypersurfaces
in complex twoplane Grassmannians $G_2({\mathbb C}^{m+2})$.
Among them, Suh classified Hopf hypersurfaces $M$ in $G_2({\mathbb
C}^{m+2})$ with Reeb parallel Ricci tensor in LeviCivita connection.
In this paper, we introduce the notion of generalized TanakaWebster
(in shortly, GTW) Reeb parallel Ricci tensor for Hopf hypersurface
$M$ in $G_2({\mathbb C}^{m+2})$. Next, we give a complete classification
of Hopf hypersurfaces in $G_2({\mathbb C}^{m+2})$ with GTW Reeb
parallel Ricci tensor.
Keywords:Complex twoplane Grassmannian, real hypersurface, Hopf hypersurface, generalized TanakaWebster connection, parallelism, Reeb parallelism, Ricci tensor Categories:53C40, 53C15 

5. CMB 2015 (vol 58 pp. 835)
6. CMB 2013 (vol 57 pp. 821)
 Jeong, Imsoon; Kim, Seonhui; Suh, Young Jin

Real Hypersurfaces in Complex TwoPlane Grassmannians with Reeb Parallel Structure Jacobi Operator
In this paper we give a characterization of a real hypersurface of
Type~$(A)$ in complex twoplane Grassmannians ${ { {G_2({\mathbb
C}^{m+2})} } }$, which means a
tube over a totally geodesic $G_{2}(\mathbb C^{m+1})$ in
${G_2({\mathbb C}^{m+2})}$, by
the Reeb parallel structure Jacobi operator ${\nabla}_{\xi}R_{\xi}=0$.
Keywords:real hypersurfaces, complex twoplane Grassmannians, Hopf hypersurface, Reeb parallel, structure Jacobi operator Categories:53C40, 53C15 

7. CMB 2011 (vol 56 pp. 306)
8. CMB 2011 (vol 56 pp. 500)
 Browning, T. D.

The LangWeil Estimate for Cubic Hypersurfaces
An improved estimate is provided for the number of $\mathbb{F}_q$rational points
on a geometrically irreducible, projective, cubic hypersurface that is
not equal to a cone.
Keywords:cubic hypersurface, rational points, finite fields Categories:11G25, 14G15 

9. CMB 2011 (vol 55 pp. 114)
10. CMB 2011 (vol 54 pp. 422)
11. CMB 2009 (vol 53 pp. 218)
 Biswas, Indranil

Restriction of the Tangent Bundle of $G/P$ to a Hypersurface
Let P be a maximal proper parabolic subgroup of a connected simple linear algebraic group G, defined over $\mathbb C$, such that $n := \dim_{\mathbb C} G/P \geq 4$. Let $\iota \colon Z \hookrightarrow G/P$ be a reduced smooth hypersurface of degree at least $(n1)\cdot \operatorname{degree}(T(G/P))/n$. We prove that the restriction of the tangent bundle $\iota^*TG/P$ is semistable.
Keywords:tangent bundle, homogeneous space, semistability, hypersurface Categories:14F05, 14J60, 14M15 

12. CMB 2008 (vol 51 pp. 359)