Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword factorization

  Expand all        Collapse all Results 1 - 5 of 5

1. CMB Online first

Li, Ji; Wick, Brett D.
Weak Factorizations of the Hardy space $H^1(\mathbb{R}^n)$ in terms of Multilinear Riesz Transforms
This paper provides a constructive proof of the weak factorization of the classical Hardy space $H^1(\mathbb{R}^n)$ in terms of multilinear Riesz transforms. As a direct application, we obtain a new proof of the characterization of ${\rm BMO}(\mathbb{R}^n)$ (the dual of $H^1(\mathbb{R}^n)$) via commutators of the multilinear Riesz transforms.

Keywords:Hardy space, BMO space, multilinear Riesz transform, weak factorization
Categories:42B35, 42B20

2. CMB 2016 (vol 60 pp. 104)

Diestel, Geoff
An Extension of Nikishin's Factorization Theorem
A Nikishin-Maurey characterization is given for bounded subsets of weak-type Lebesgue spaces. New factorizations for linear and multilinear operators are shown to follow.

Keywords:factorization, type, cotype, Banach spaces
Categories:46E30, 28A25

3. CMB 2015 (vol 58 pp. 449)

Boynton, Jason Greene; Coykendall, Jim
On the Graph of Divisibility of an Integral Domain
It is well known that the factorization properties of a domain are reflected in the structure of its group of divisibility. The main theme of this paper is to introduce a topological/graph-theoretic point of view to the current understanding of factorization in integral domains. We also show that connectedness properties in the graph and topological space give rise to a generalization of atomicity.

Keywords:atomic, factorization, divisibility
Categories:13F15, 13A05

4. CMB 2011 (vol 54 pp. 255)

Dehaye, Paul-Olivier
On an Identity due to Bump and Diaconis, and Tracy and Widom
A classical question for a Toeplitz matrix with given symbol is how to compute asymptotics for the determinants of its reductions to finite rank. One can also consider how those asymptotics are affected when shifting an initial set of rows and columns (or, equivalently, asymptotics of their minors). Bump and Diaconis obtained a formula for such shifts involving Laguerre polynomials and sums over symmetric groups. They also showed how the Heine identity extends for such minors, which makes this question relevant to Random Matrix Theory. Independently, Tracy and Widom used the Wiener-Hopf factorization to express those shifts in terms of products of infinite matrices. We show directly why those two expressions are equal and uncover some structure in both formulas that was unknown to their authors. We introduce a mysterious differential operator on symmetric functions that is very similar to vertex operators. We show that the Bump-Diaconis-Tracy-Widom identity is a differentiated version of the classical Jacobi-Trudi identity.

Keywords:Toeplitz matrices, Jacobi-Trudi identity, Szegő limit theorem, Heine identity, Wiener-Hopf factorization
Categories:47B35, 05E05, 20G05

5. CMB 2010 (vol 54 pp. 39)

Chapman, S. T.; García-Sánchez, P. A.; Llena, D.; Marshall, J.
Elements in a Numerical Semigroup with Factorizations of the Same Length
Questions concerning the lengths of factorizations into irreducible elements in numerical monoids have gained much attention in the recent literature. In this note, we show that a numerical monoid has an element with two different irreducible factorizations of the same length if and only if its embedding dimension is greater than two. We find formulas in embedding dimension three for the smallest element with two different irreducible factorizations of the same length and the largest element whose different irreducible factorizations all have distinct lengths. We show that these formulas do not naturally extend to higher embedding dimensions.

Keywords:numerical monoid, numerical semigroup, non-unique factorization
Categories:20M14, 20D60, 11B75

© Canadian Mathematical Society, 2017 :