26. CMB Online first
 Sickel, Winfried; Yang, Dachun; Yuan, Wen; Zhuo, Ciqiang

Characterizations of BesovType and TriebelLizorkinType Spaces via Averages on Balls
Let $\ell\in\mathbb N$ and $\alpha\in (0,2\ell)$. In this article,
the authors establish
equivalent characterizations
of Besovtype spaces, TriebelLizorkintype
spaces and BesovMorrey spaces via the sequence
$\{fB_{\ell,2^{k}}f\}_{k}$ consisting of the difference between
$f$ and
the ball average $B_{\ell,2^{k}}f$. These results give a way
to introduce Besovtype spaces,
TriebelLizorkintype spaces and BesovMorrey spaces with any
smoothness order
on metric measure spaces. As special cases, the authors obtain
a new characterization of MorreySobolev spaces
and $Q_\alpha$ spaces with $\alpha\in(0,1)$, which are of independent
interest.
Keywords:Besov space, TriebelLizorkin space, ball average, CalderÃ³n reproducing formula Categories:42B25, 46E35, 42B35 

27. CMB Online first
 Stoyanov, Luchezar

On Gibbs measures and spectra of Ruelle transfer operators
We prove a comprehensive version of the RuellePerronFrobenius
Theorem
with explicit estimates of the spectral radius of the Ruelle
transfer operator and various other
quantities related to spectral properties of this operator. The
novelty here is that the HÃ¶lder
constant of the function generating the operator appears only
polynomially, not exponentially as
in previous known estimates.
Keywords:subshift of finite type, Ruelle transfer operator, Gibbs measure Categories:37A05, 37B10 

28. CMB 2016 (vol 60 pp. 165)
 Morimoto, Masaharu

Cokernels of Homomorphisms from Burnside Rings to Inverse Limits
Let $G$ be a finite group and
let $A(G)$ denote the Burnside ring of $G$.
Then an inverse limit $L(G)$ of the groups $A(H)$ for
proper subgroups $H$ of $G$ and a homomorphism
${\operatorname{res}}$ from $A(G)$ to $L(G)$ are obtained in a natural
way.
Let $Q(G)$ denote the cokernel of ${\operatorname{res}}$.
For a prime $p$,
let $N(p)$ be the minimal
normal subgroup of $G$ such that the order of $G/N(p)$ is
a power of $p$, possibly $1$.
In this paper we prove that $Q(G)$ is isomorphic to
the cartesian product of the groups $Q(G/N(p))$, where $p$
ranges over the primes dividing the order of $G$.
Keywords:Burnside ring, inverse limit, finite group Categories:19A22, 57S17 

29. CMB Online first
 Jensen, Gerd; Pommerenke, Christian

On the structure of the Schild group in Relativity Theory
Alfred Schild has established conditions
that Lorentz transformations map worldvectors $(ct,x,y,z)$ with
integer coordinates onto vectors of the same kind. These transformations
are called integral Lorentz transformations.
The present paper contains supplements to
our earlier work
with a new focus on group theory. To relate the results to the
familiar matrix group nomenclature we associate Lorentz transformations
with matrices in $\mathrm{SL}(2,\mathbb{C})$. We consider the
lattice of subgroups of the group originated in Schild's paper
and obtain generating sets for the full group and its subgroups.
Keywords:Lorentz transformation, integer lattice, Gaussian integers, Schild group, subgroup Categories:22E43, 20H99, 83A05 

30. CMB Online first
 Shravan Kumar, N.

Invariant means on a class of von Neumann Algebras related to Ultraspherical Hypergroups II
Let $K$ be an ultraspherical hypergroup associated to a locally
compact group $G$ and a spherical projector $\pi$ and let $VN(K)$
denote the dual of the Fourier algebra $A(K)$ corresponding to
$K.$ In this note, we show that the set of invariant means on
$VN(K)$ is singleton if and only if $K$ is discrete. Here $K$
need not be second countable. We also study invariant means on
the dual of the Fourier algebra $A_0(K),$ the closure of $A(K)$
in the $cb$multiplier norm. Finally, we consider generalized
translations and generalized invariant means.
Keywords:ultraspherical hypergroup, Fourier algebra, FourierStieltjes algebra, invariant mean, generalized translation, generalized invariant mean Categories:43A62, 46J10, 43A30, 20N20 

31. CMB 2016 (vol 60 pp. 26)
32. CMB Online first
 Eroǧlu, Münevver Pınar; Argaç, Nurcan

On Identities with Composition of Generalized Derivations
Let $R$ be a prime ring with extended
centroid $C$, $Q$ maximal right ring of quotients of $R$, $RC$
central closure of $R$ such that $dim_{C}(RC)
\gt 4$, $f(X_{1},\dots,X_{n})$
a multilinear polynomial over $C$ which is not centralvalued
on $R$ and $f(R)$ the set of all evaluations of the multilinear
polynomial $f\big(X_{1},\dots,X_{n}\big)$ in $R$. Suppose that
$G$ is a nonzero generalized derivation of $R$ such that $G^2\big(u\big)u
\in C$ for all $u\in f(R)$ then one of the following conditions
holds:
(I) there exists $a\in Q$ such that $a^2=0$ and
either $G(x)=ax$ for all $x\in R$ or $G(x)=xa$ for all $x\in
R$;
(II) there exists $a\in Q$ such that $0\neq a^2\in
C$ and either $G(x)=ax$ for all $x\in R$ or $G(x)=xa$ for all
$x\in R$ and $f(X_{1},\dots,X_{n})^{2}$ is centralvalued on
$R$;
(III) $char(R)=2$ and one of the following holds:
(i) there exist $a, b\in Q$ such that $G(x)=ax+xb$ for all
$x\in R$ and $a^{2}=b^{2}\in C$;
(ii) there exist $a, b\in Q$ such that $G(x)=ax+xb$ for all
$x\in R$, $a^{2}, b^{2}\in C$ and $f(X_{1},\ldots,X_{n})^{2}$
is centralvalued on $R$;
(iii) there exist $a \in Q$ and an $X$outer derivation $d$
of $R$ such that $G(x)=ax+d(x)$ for all $x\in R$, $d^2=0$ and
$a^2+d(a)=0$;
(iv) there exist $a \in Q$ and an $X$outer derivation $d$
of $R$ such that $G(x)=ax+d(x)$ for all $x\in R$, $d^2=0$,
$a^2+d(a)\in C$ and $f(X_{1},\dots,X_{n})^{2}$ is centralvalued
on $R$.
Moreover, we characterize the form of nonzero generalized derivations
$G$ of $R$ satisfying $G^2(x)=\lambda x$ for all $x\in R$, where
$\lambda \in C$.
Keywords:prime ring, generalized derivation, composition, extended centroid, multilinear polynomial, maximal right ring of quotients Categories:16N60, 16N25 

33. CMB Online first
 Louder, Larsen; Wilton, Henry

Stackings and the $W$cycles conjecture
We prove Wise's $W$cycles conjecture: Consider a compact graph
$\Gamma'$ immersing into another graph $\Gamma$. For any immersed
cycle $\Lambda:S^1\to \Gamma$, we consider the map $\Lambda'$
from
the circular components $\mathbb{S}$ of the pullback to $\Gamma'$.
Unless
$\Lambda'$ is reducible, the degree of the covering map $\mathbb{S}\to
S^1$ is bounded above by minus the Euler characteristic of
$\Gamma'$. As a corollary, any finitely generated subgroup
of a
onerelator group has finitely generated Schur multiplier.
Keywords:free groups, onerelator groups, rightorderability Category:20F65 

34. CMB 2016 (vol 60 pp. 131)
35. CMB Online first
 Reichstein, Zinovy; Vistoli, Angelo

On the dimension of the locus of determinantal hypersurfaces
The characteristic polynomial $P_A(x_0, \dots,
x_r)$
of an $r$tuple $A := (A_1, \dots, A_r)$ of $n \times n$matrices
is
defined as
\[ P_A(x_0, \dots, x_r) := \det(x_0 I + x_1 A_1 + \dots + x_r
A_r) \, . \]
We show that if $r \geqslant 3$
and $A := (A_1, \dots, A_r)$ is an $r$tuple of $n \times n$matrices in general position,
then up to conjugacy, there are only finitely many $r$tuples
$A' := (A_1', \dots, A_r')$ such that $p_A = p_{A'}$. Equivalently,
the locus of determinantal hypersurfaces of degree $n$ in $\mathbf{P}^r$
is irreducible of dimension $(r1)n^2 + 1$.
Keywords:determinantal hypersurface, matrix invariant, $q$binomial coefficient Categories:14M12, 15A22, 05A10 

36. CMB 2016 (vol 60 pp. 12)
 Akbari, Saieed; Miraftab, Babak; Nikandish, Reza

Comaximal Graphs of Subgroups of Groups
Let $H$ be a group. The comaximal graph of subgroups
of $H$, denoted by $\Gamma(H)$, is a
graph whose vertices are nontrivial and proper subgroups of
$H$ and two distinct vertices $L$
and $K$ are adjacent in $\Gamma(H)$ if and only if $H=LK$. In
this paper, we study the connectivity, diameter, clique number
and vertex
chromatic number of $\Gamma(H)$. For instance, we show that
if $\Gamma(H)$ has no isolated vertex, then $\Gamma(H)$
is connected with diameter at most $3$. Also, we characterize
all finite groups whose comaximal graphs are connected.
Among other results, we show that if $H$ is a finitely generated
solvable group and $\Gamma(H)$ is connected and moreover the
degree of a maximal subgroup is finite, then $H$ is finite.
Furthermore, we show that the degree of each vertex in the
comaximal graph of a general linear group over an algebraically
closed field is zero or infinite.
Keywords:comaximal graphs of subgroups of groups, diameter, nilpotent group, solvable group Categories:05C25, 05E15, 20D10, 20D15 

37. CMB 2016 (vol 60 pp. 43)
38. CMB 2016 (vol 60 pp. 95)
 Choi, ChangKwon; Chung, Jaeyoung; Ju, Yumin; Rassias, John

Cubic Functional Equations on Restricted Domains of Lebesgue Measure Zero
Let $X$ be a real normed space, $Y$ a Bancch space and $f:X \to
Y$.
We prove the UlamHyers stability theorem
for the cubic functional equation
\begin{align*}
f(2x+y)+f(2xy)2f(x+y)2f(xy)12f(x)=0
\end{align*}
in restricted domains. As an application we consider a measure
zero stability problem
of the inequality
\begin{align*}
\f(2x+y)+f(2xy)2f(x+y)2f(xy)12f(x)\\le \epsilon
\end{align*}
for all $(x, y)$ in $\Gamma\subset\mathbb R^2$ of Lebesgue measure
0.
Keywords:Baire category theorem, cubic functional equation, first category, Lebesgue measure, UlamHyers stability Category:39B82 

39. CMB 2016 (vol 60 pp. 104)
40. CMB 2016 (vol 60 pp. 184)
 Pathak, Siddhi

On a Conjecture of Livingston
In an attempt to resolve a folklore conjecture of ErdÃ¶s regarding
the nonvanishing at $s=1$ of the $L$series
attached to a periodic arithmetical function with period $q$
and values in $\{ 1, 1\} $, Livingston conjectured the $\bar{\mathbb{Q}}$
 linear independence of logarithms of certain algebraic numbers.
In this paper, we disprove Livingston's conjecture for composite
$q \geq 4$, highlighting that a new approach is required to settle
ErdÃ¶s's conjecture. We also prove that the conjecture is
true for prime $q \geq 3$, and indicate that more ingredients
will be needed to settle ErdÃ¶s's conjecture for prime $q$.
Keywords:nonvanishing of Lseries, linear independence of logarithms of algebraic numbers Categories:11J86, 11J72 

41. CMB 2016 (vol 60 pp. 197)
 Tang, Zikai; Deng, Hanyuan

Degree Kirchhoff Index of Bicyclic Graphs
Let $G$ be a connected graph with vertex set $V(G)$. The degree
Kirchhoff index of $G$ is defined as $S'(G) =\sum_{\{u,v\}\subseteq
V(G)}d(u)d(v)R(u,v)$, where $d(u)$ is the degree of vertex $u$,
and
$R(u, v)$ denotes the resistance distance between vertices $u$
and
$v$. In this paper, we characterize the graphs having maximum
and
minimum degree Kirchhoff index among all $n$vertex bicyclic
graphs
with exactly two cycles.
Keywords:degree Kirchhoff index, resistance distance, bicyclic graph, extremal graph Categories:05C12, 05C35 

42. CMB Online first
 Xu, Xu; Zhu, Laiyi

Rational function operators from Poisson integrals
In this paper, we construct two classes of rational function
operators by using the Poisson integrals of the function on the
whole real
axis. The convergence rates of the uniform and mean approximation
of such rational function operators on the whole real axis are
studied.
Keywords:rational function operators, Poisson integrals, convergence rate, uniform approximation, mean approximation Categories:41A20, 41A25, 41A35 

43. CMB 2016 (vol 60 pp. 173)
 Oubbi, Lahbib

On Ulam Stability of a Functional Equation in Banach Modules
Let $X$ and $Y$ be Banach spaces and $f : X \to Y$ an odd mapping.
For any rational number $r \ne 2$, C. Baak, D. H.
Boo, and Th. M. Rassias have proved the HyersUlam stability
of the following functional equation:
\begin{align*}
r f
\left(\frac{\sum_{j=1}^d x_j}{r}
\right)
& + \sum_{\substack{i(j) \in \{0,1\}
\\ \sum_{j=1}^d i(j)=\ell}} r f
\left(
\frac{\sum_{j=1}^d (1)^{i(j)}x_j}{r}
\right)
= (C^\ell_{d1}  C^{\ell 1}_{d1} + 1) \sum_{j=1}^d
f(x_j)
\end{align*}
where $d$ and $\ell$ are positive integers so that $1 \lt \ell
\lt \frac{d}{2}$, and $C^p_q := \frac{q!}{(qp)!p!}$,
$p, q \in \mathbb{N}$ with $p \le q$.
In this note we solve this equation for arbitrary nonzero scalar
$r$ and show that it is actually HyersUlam stable.
We thus extend and generalize Baak et al.'s result.
Different questions concerning the *homomorphisms and the
multipliers between C*algebras are also
considered.
Keywords:linear functional equation, HyersUlam stability, Banach modules, C*algebra homomorphisms. Categories:39A30, 39B10, 39A06, 46Hxx 

44. CMB 2016 (vol 59 pp. 806)
 Izumiya, Shyuichi

Geometric Interpretation of Lagrangian Equivalence
As an application of the theory of
graphlike Legendrian unfoldings, relations of the hidden structures
of caustics and wave front propagations are revealed.
Keywords:wave front propagations, big wave fronts, graphlike Legendrian unfoldings, caustics Categories:58K05, 57R45, 58K60 

45. CMB 2016 (vol 59 pp. 776)
46. CMB 2016 (vol 59 pp. 849)
 Nah, Kyeongah; Röst, Gergely

Stability Threshold for Scalar Linear Periodic Delay Differential Equations
We prove that for the linear scalar delay differential
equation
$$ \dot{x}(t) =  a(t)x(t) + b(t)x(t1) $$
with nonnegative periodic coefficients of period $P\gt 0$, the
stability threshold for the trivial solution is
$r:=\int_{0}^{P}
\left(b(t)a(t)
\right)\mathrm{d}t=0,$
assuming that $b(t+1)a(t)$ does not change its sign. By constructing
a class of explicit examples, we show the counterintuitive result
that in general, $r=0$ is not a stability threshold.
Keywords:delay differential equation, stability, periodic system Categories:34K20, 34K06 

47. CMB Online first
 Gauthier, Paul M; Sharifi, Fatemeh

Luzintype holomorphic approximation on closed subsets of open Riemann surfaces
It is known that if $E$ is a closed subset of an open Riemann
surface $R$ and $f$ is a holomorphic function on a neighbourhood
of $E,$ then it is ``usually" not possible to approximate $f$
uniformly by functions holomorphic on all of $R.$ We show, however,
that for every open Riemann surface $R$ and every closed subset
$E\subset R,$ there is closed subset $F\subset E,$ which approximates
$E$ extremely well, such that every function holomorphic on $F$
can be approximated much better than uniformly by functions holomorphic
on $R$.
Keywords:Carleman approximation, tangential approximation, Myrberg surface Categories:30E15, 30F99 

48. CMB Online first
 Werner, Elisabeth; Ye, Deping

Mixed $f$divergence for multiple pairs of measures
In this paper, the concept of the classical $f$divergence for
a pair of measures is extended to the mixed $f$divergence for
multiple pairs of measures. The mixed $f$divergence provides
a way to measure the difference between multiple pairs of (probability)
measures. Properties for the mixed $f$divergence are established,
such as permutation invariance and symmetry in distributions.
An
AlexandrovFenchel type inequality and an isoperimetric inequality
for the
mixed $f$divergence are proved.
Keywords:AlexandrovFenchel inequality, $f$dissimilarity, $f$divergence, isoperimetric inequality Categories:28XX, 52XX, 60XX 

49. CMB Online first
 Liu, Feng; Wu, Huoxiong

Endpoint Regularity of Multisublinear Fractional Maximal Functions
In this paper we investigate
the endpoint regularity properties of the multisublinear
fractional maximal operators, which include the multisublinear
HardyLittlewood maximal operator. We obtain some new bounds
for the derivative of the onedimensional multisublinear
fractional maximal operators acting on vectorvalued function
$\vec{f}=(f_1,\dots,f_m)$ with all $f_j$ being $BV$functions.
Keywords:multisublinear fractional maximal operators, Sobolev spaces, bounded variation Categories:42B25, 46E35 

50. CMB 2016 (vol 60 pp. 154)
 Liu, Ye

On Chromatic Functors and Stable Partitions of Graphs
The chromatic functor of a simple graph is a functorization of
the chromatic polynomial. M. Yoshinaga showed
that two finite graphs have isomorphic chromatic functors if
and only if they have the same chromatic polynomial. The key
ingredient in the proof is the use of stable partitions of graphs.
The latter is shown to be closely related to chromatic functors.
In this note, we further investigate some interesting properties
of chromatic functors associated to simple graphs using stable
partitions. Our first result is the determination of the group
of natural automorphisms of the chromatic functor, which is in
general a larger group than the automorphism group of the graph.
The second result is that the composition of the chromatic functor
associated to a finite graph restricted to the category $\mathrm{FI}$
of finite sets and injections with the free functor into the
category of complex vector spaces yields a consistent sequence
of representations of symmetric groups which is representation
stable in the sense of ChurchFarb.
Keywords:chromatic functor, stable partition, representation stability Categories:05C15, 20C30 
