351. CMB 2011 (vol 54 pp. 680)
 JiménezVargas, A.; VillegasVallecillos, Moisés

$2$Local Isometries on Spaces of Lipschitz Functions
Let $(X,d)$ be a metric space, and let $\mathop{\textrm{Lip}}(X)$ denote the Banach
space of all scalarvalued bounded Lipschitz functions $f$ on $X$
endowed with one of the natural norms
$
\ f\ =\max \{\ f\ _\infty ,L(f)\}$ or $\f\ =\
f\ _\infty +L(f),
$
where $L(f)$ is the
Lipschitz constant of $f.$ It is said that the isometry
group of $\mathop{\textrm{Lip}}(X)$ is canonical if every
surjective linear isometry of
$\mathop{\textrm{Lip}}(X) $ is induced by a surjective isometry of $X$.
In this paper
we prove that if $X$ is bounded separable and the isometry group of
$\mathop{\textrm{Lip}}(X)$ is canonical, then every $2$local isometry
of $\mathop{\textrm{Lip}}(X)$ is
a surjective linear isometry. Furthermore, we give a complete
description of all $2$local isometries of $\mathop{\textrm{Lip}}(X)$ when $X$ is
bounded.
Keywords:isometry, local isometry, Lipschitz function Categories:46B04, 46J10, 46E15 

352. CMB 2011 (vol 54 pp. 472)
 Iacono, Donatella

A Semiregularity Map Annihilating Obstructions to Deforming Holomorphic Maps
We study infinitesimal deformations of holomorphic maps of
compact, complex, KÃ¤hler manifolds. In particular, we describe a
generalization of Bloch's semiregularity map that annihilates
obstructions to deform holomorphic maps with fixed codomain.
Keywords:semiregularity map, obstruction theory, functors of Artin rings, differential graded Lie algebras Categories:13D10, 14D15, 14B10 

353. CMB 2011 (vol 54 pp. 338)
 Nakazi, Takahiko

SzegÃ¶'s Theorem and Uniform Algebras
We study SzegÃ¶'s theorem for a uniform algebra.
In particular, we do it for the disc algebra or the bidisc algebra.
Keywords:SzegÃ¶'s theorem, uniform algebras, disc algebra, weighted Bergman space Categories:32A35, 46J15, 60G25 

354. CMB 2011 (vol 54 pp. 255)
 Dehaye, PaulOlivier

On an Identity due to Bump and Diaconis, and Tracy and Widom
A classical question for a Toeplitz matrix with given symbol is how to
compute asymptotics for the determinants of its reductions to finite
rank. One can also consider how those asymptotics are affected when
shifting an initial set of rows and columns (or, equivalently,
asymptotics of their minors). Bump and Diaconis
obtained a formula for such shifts involving Laguerre polynomials and
sums over symmetric groups. They also showed how the Heine identity
extends for such minors, which makes this question relevant to Random
Matrix Theory. Independently, Tracy and Widom
used the WienerHopf factorization to
express those shifts in terms of products of infinite matrices. We
show directly why those two expressions are equal and uncover some
structure in both formulas that was unknown to their authors. We
introduce a mysterious differential operator on symmetric functions
that is very similar to vertex operators. We show that the
BumpDiaconisTracyWidom identity is a differentiated version of the
classical JacobiTrudi identity.
Keywords:Toeplitz matrices, JacobiTrudi identity, SzegÅ limit theorem, Heine identity, WienerHopf factorization Categories:47B35, 05E05, 20G05 

355. CMB 2011 (vol 54 pp. 249)
356. CMB 2011 (vol 54 pp. 311)
357. CMB 2011 (vol 54 pp. 330)
 Mouhib, A.

Sur la borne infÃ©rieure du rang du 2groupe de classes de certains corps multiquadratiques
Soient $p_1,p_2,p_3$ et $q$ des nombres premiers distincts tels que
$p_1\equiv p_2\equiv p_3\equiv q\equiv 1 \pmod{4}$, $k = \mathbf{Q}
(\sqrt{p_1}, \sqrt{p_2}, \sqrt{p_3}, \sqrt{q})$ et $\operatorname{Cl}_2(k)$ le
$2$groupe de classes de $k$. A. FrÃ¶hlich a
dÃ©montrÃ© que $\operatorname{Cl}_2(k)$ n'est jamais trivial. Dans cet article,
nous donnons une extension de ce rÃ©sultat, en dÃ©montrant que le
rang de $\operatorname{Cl}_2(k)$ est toujours supÃ©rieur ou Ã©gal Ã $2$. Nous
dÃ©montrons aussi, que la valeur $2$ est optimale pour une famille
infinie de corps $k$.
Keywords:class group, units, multiquadratic number fields Categories:11R29, 11R11 

358. CMB 2011 (vol 54 pp. 302)
359. CMB 2010 (vol 54 pp. 193)
 Bennett, Harold; Lutzer, David

Measurements and $G_\delta$Subsets of Domains
In this paper we study domains, Scott
domains, and the existence of measurements. We
use a space created by D.~K. Burke to show that
there is a Scott domain $P$ for which $\max(P)$ is
a $G_\delta$subset of $P$ and yet no measurement
$\mu$ on $P$ has $\ker(\mu) = \max(P)$. We also
correct a mistake in the literature asserting that
$[0, \omega_1)$ is a space of this type. We show
that if $P$ is a Scott domain and $X \subseteq
\max(P)$ is a $G_\delta$subset of $P$, then $X$
has a $G_\delta$diagonal and is weakly
developable. We show that if $X \subseteq
\max(P)$ is a $G_\delta$subset of $P$, where
$P$ is a domain but perhaps not a Scott domain,
then $X$ is domainrepresentable,
firstcountable, and is the union of dense,
completely metrizable subspaces. We also
show that there is a domain $P$ such that
$\max(P)$ is the usual space of countable
ordinals and is a $G_\delta$subset of $P$ in
the Scott topology. Finally we show that the
kernel of a measurement on a Scott domain can
consistently be a normal, separable,
nonmetrizable Moore space.
Keywords:domainrepresentable, Scottdomainrepresentable, measurement, Burke's space, developable spaces, weakly developable spaces, $G_\delta$diagonal, Äechcomplete space, Moore space, $\omega_1$, weakly developable space, sharp base, AFcomplete Categories:54D35, 54E30, 54E52, 54E99, 06B35, 06F99 

360. CMB 2010 (vol 54 pp. 538)
361. CMB 2010 (vol 54 pp. 527)
 Preda, Ciprian; Sipos, Ciprian

On the Dichotomy of the Evolution Families: A DiscreteArgument Approach
We establish a discretetime criteria guaranteeing the existence of an
exponential dichotomy in the continuoustime
behavior of an abstract evolution family. We prove that an evolution
family ${\cal U}=\{U(t,s)\}_{t
\geq s\geq 0}$ acting on a Banach space $X$ is uniformly
exponentially dichotomic (with respect to its continuoustime
behavior) if and only if the
corresponding difference equation with the inhomogeneous term from
a vectorvalued Orlicz sequence space $l^\Phi(\mathbb{N}, X)$
admits
a solution in the same $l^\Phi(\mathbb{N},X)$. The technique of
proof effectively eliminates the continuity hypothesis on the
evolution family (\emph{i.e.,} we do not assume that $U(\,\cdot\,,s)x$
or $U(t,\,\cdot\,)x$ is continuous on $[s,\infty)$, and respectively
$[0,t]$). Thus, some known results given by
Coffman and Schaffer, Perron, and Ta Li are extended.
Keywords:evolution families, exponential dichotomy, Orlicz sequence spaces, admissibility Categories:34D05, 47D06, 93D20 

362. CMB 2010 (vol 54 pp. 207)
 Chen, Jiecheng; Fan, Dashan

A Bilinear Fractional Integral on Compact Lie Groups
As an analog of a wellknown theorem on the bilinear
fractional integral on $\mathbb{R}^{n}$ by Kenig and Stein,
we establish the similar boundedness
property for a bilinear fractional integral on a compact Lie group. Our
result is also a generalization of our recent theorem
about the
bilinear fractional integral on torus.
Keywords:bilinear fractional integral, $L^p$ spaces, Heat kernel Categories:43A22, 43A32, 43B25 

363. CMB 2010 (vol 54 pp. 364)
364. CMB 2010 (vol 54 pp. 270)
 Dow, Alan

Sequential Order Under PFA
It is shown that it follows from PFA
that there is no
compact scattered space of height greater than $\omega$
in which the sequential order and the scattering heights coincide.
Keywords:sequential order, scattered spaces, PFA Categories:54D55, 03E05, 03E35, 54A20 

365. CMB 2010 (vol 54 pp. 381)
 Velušček, Dejan

A Short Note on the Higher Level Version of the KrullBaer Theorem
Klep and Velu\v{s}\v{c}ek generalized the KrullBaer theorem for
higher level preorderings to the noncommutative setting. A $n$real valuation
$v$ on a skew field $D$ induces a group homomorphism $\overline{v}$. A section
of $\overline{v}$ is a crucial ingredient of the construction of a complete
preordering on the base field $D$ such that its projection on the residue skew
field $k_v$ equals the given level $1$ ordering on $k_v$. In the article we give
a proof of the existence of the section of $\overline{v}$, which was left as an
open problem by Klep and Velu\v{s}\v{c}ek, and thus
complete the generalization of the KrullBaer theorem for preorderings.
Keywords:orderings of higher level, division rings, valuations Categories:14P99, 06Fxx 

366. CMB 2010 (vol 54 pp. 12)
 Bingham, N. H.; Ostaszewski, A. J.

Homotopy and the KestelmanBorweinDitor Theorem
The KestelmanBorweinDitor Theorem, on embedding a null sequence by
translation in (measure/category) ``large'' sets has two generalizations.
Miller replaces the translated sequence by a ``sequence homotopic
to the identity''. The authors, in a previous paper, replace points by functions:
a uniform functional null sequence replaces the null sequence, and
translation receives a functional form. We give a unified approach to
results of this kind. In particular, we show that (i) Miller's homotopy
version follows from the functional version, and (ii) the pointwise instance
of the functional version follows from Miller's homotopy version.
Keywords:measure, category, measurecategory duality, differentiable homotopy Category:26A03 

367. CMB 2010 (vol 54 pp. 159)
 Sababheh, Mohammad

Hardy Inequalities on the Real Line
We prove that some inequalities, which are considered to be
generalizations of Hardy's inequality on the circle,
can be modified and proved to be true for functions integrable on the real line.
In fact we would like to show that some constructions that were
used to prove the Littlewood conjecture can be used similarly to
produce real Hardytype inequalities.
This discussion will lead to many questions concerning the
relationship between Hardytype inequalities on the circle and
those on the real line.
Keywords:Hardy's inequality, inequalities including the Fourier transform and Hardy spaces Categories:42A05, 42A99 

368. CMB 2010 (vol 54 pp. 147)
 Nelson, Sam

Generalized Quandle Polynomials
We define a family of generalizations of the twovariable quandle polynomial.
These polynomial invariants generalize in a natural way to eightvariable
polynomial invariants of finite biquandles. We use these polynomials to define
a family of link invariants that further generalize the quandle counting
invariant.
Keywords:finite quandles, finite biquandles, link invariants Categories:57M27, 76D99 

369. CMB 2010 (vol 54 pp. 180)
 Spurný, J.; Zelený, M.

Additive Families of Low Borel Classes and Borel Measurable Selectors
An important conjecture in the theory of Borel sets in nonseparable
metric spaces is whether any pointcountable Boreladditive family in
a complete metric space has a $\sigma$discrete refinement. We confirm the conjecture for
pointcountable $\mathbf\Pi_3^0$additive families, thus generalizing results of
R. W. Hansell and the first author. We apply this result to the
existence of Borel measurable selectors for multivalued mappings of
low Borel complexity, thus answering in the affirmative a particular
version of a question of J. Kaniewski and R. Pol.
Keywords:$\sigma$discrete refinement, Boreladditive family, measurable selection Categories:54H05, 54E35 

370. CMB 2010 (vol 53 pp. 587)
 Birkenmeier, Gary F.; Park, Jae Keol; Rizvi, S. Tariq

Hulls of Ring Extensions
We investigate the behavior of the quasiBaer and the
right FIextending right ring hulls under various ring extensions
including group ring extensions, full and triangular matrix ring
extensions, and infinite matrix ring extensions. As a consequence,
we show that for semiprime rings $R$ and $S$, if $R$ and $S$ are
Morita equivalent, then so are the quasiBaer right ring hulls
$\widehat{Q}_{\mathfrak{qB}}(R)$ and $\widehat{Q}_{\mathfrak{qB}}(S)$ of
$R$ and $S$, respectively. As an application, we prove that if
unital $C^*$algebras $A$ and $B$ are Morita equivalent as rings,
then the bounded central closure of $A$ and that of $B$ are
strongly Morita equivalent as $C^*$algebras. Our results show
that the quasiBaer property is always preserved by infinite
matrix rings, unlike the Baer property. Moreover, we give an
affirmative answer to an open question of Goel and Jain for the
commutative group ring $A[G]$ of a torsionfree Abelian group $G$
over a commutative semiprime quasicontinuous ring $A$. Examples
that illustrate and delimit the results of this paper are provided.
Keywords:(FI)extending, Morita equivalent, ring of quotients, essential overring, (quasi)Baer ring, ring hull, u.p.monoid, $C^*$algebra Categories:16N60, 16D90, 16S99, 16S50, 46L05 

371. CMB 2010 (vol 54 pp. 39)
 Chapman, S. T.; GarcíaSánchez, P. A.; Llena, D.; Marshall, J.

Elements in a Numerical Semigroup with Factorizations of the Same Length
Questions concerning the lengths of factorizations into irreducible
elements in numerical monoids
have gained much attention in the recent literature. In this note,
we show that a numerical monoid has an element with two different
irreducible factorizations of the same length if and only if its
embedding dimension is greater than
two. We find formulas in embedding dimension three for the smallest
element with two different irreducible factorizations of the same
length and the largest element whose different irreducible
factorizations all have distinct lengths. We show that these
formulas do not naturally extend to higher embedding
dimensions.
Keywords:numerical monoid, numerical semigroup, nonunique factorization Categories:20M14, 20D60, 11B75 

372. CMB 2010 (vol 53 pp. 690)
 Puerta, M. E.; Loaiza, G.

On the Maximal Operator Ideal Associated with a Tensor Norm Defined by Interpolation Spaces
The classical approach to studying operator ideals using tensor
norms mainly focuses on those tensor norms and operator ideals
defined by means of $\ell_p$ spaces. In a previous paper,
an interpolation space, defined via the real method
and using
$\ell_p$ spaces, was used to define a tensor
norm, and the associated minimal operator ideals were characterized.
In this paper, the next natural step is taken, that is, the
corresponding maximal operator
ideals are characterized. As an application, necessary and sufficient
conditions for the coincidence of
the maximal and minimal ideals are given.
Finally, the previous results are used in order to find some new
metric properties of the mentioned tensor norm.
Keywords:maximal operator ideals, ultraproducts of spaces, interpolation spaces Categories:46M05, 46M35, 46A32 

373. CMB 2010 (vol 53 pp. 684)
 Proctor, Emily; Stanhope, Elizabeth

An Isospectral Deformation on an InfranilOrbifold
We construct a Laplace isospectral deformation of metrics on an
orbifold quotient of a nilmanifold. Each orbifold in the deformation
contains singular points with order two isotropy. Isospectrality is
obtained by modifying a generalization of Sunada's theorem due to
DeTurck and Gordon.
Keywords:spectral geometry, global Riemannian geometry, orbifold, nilmanifold Categories:58J53, 53C20 

374. CMB 2010 (vol 53 pp. 674)
 Kristály, Alexandru; Papageorgiou, Nikolaos S.; Varga, Csaba

Multiple Solutions for a Class of Neumann Elliptic Problems on Compact Riemannian Manifolds with Boundary
We study a semilinear elliptic problem on a compact Riemannian
manifold with boundary, subject to an inhomogeneous Neumann
boundary condition. Under various hypotheses on the nonlinear
terms, depending on their behaviour in the origin and infinity, we
prove multiplicity of solutions by using variational arguments.
Keywords:Riemannian manifold with boundary, Neumann problem, sublinearity at infinity, multiple solutions Categories:58J05, 35P30 

375. CMB 2010 (vol 53 pp. 667)
 Khashyarmanesh, Kazem

On the Endomorphism Rings of Local Cohomology Modules
Let $R$ be a commutative Noetherian ring and $\mathfrak{a}$ a proper ideal
of $R$. We show that if $n:=\operatorname{grade}_R\mathfrak{a}$, then
$\operatorname{End}_R(H^n_\mathfrak{a}(R))\cong \operatorname{Ext}_R^n(H^n_\mathfrak{a}(R),R)$. We also
prove that, for a nonnegative integer $n$ such that
$H^i_\mathfrak{a}(R)=0$ for every $i\neq n$, if $\operatorname{Ext}_R^i(R_z,R)=0$ for
all $i >0$ and $z \in \mathfrak{a}$, then
$\operatorname{End}_R(H^n_\mathfrak{a}(R))$ is a homomorphic
image of $R$, where $R_z$ is the ring of fractions of $R$ with
respect to a multiplicatively closed subset $\{z^j \mid j \geqslant
0 \}$ of $R$. Moreover, if $\operatorname{Hom}_R(R_z,R)=0$ for all $z
\in \mathfrak{a}$,
then $\mu_{H^n_\mathfrak{a}(R)}$ is an isomorphism, where $\mu_{H^n_\mathfrak{a}(R)}$
is the canonical ring homomorphism $R \rightarrow \operatorname{End}_R(H^n_\mathfrak{a}(R))$.
Keywords:local cohomology module, endomorphism ring, Matlis dual functor, filter regular sequence Categories:13D45, 13D07, 13D25 
