1. CMB 2011 (vol 54 pp. 506)
 Neamaty, A.; Mosazadeh, S.

On the Canonical Solution of the SturmLiouville Problem with Singularity and Turning Point of Even Order
In this paper, we are going to investigate the canonical property of solutions of
systems of differential equations having a singularity and turning
point of even order. First, by a replacement, we transform the system
to the SturmLiouville equation with turning point. Using of the
asymptotic estimates provided by Eberhard, Freiling, and Schneider
for a special fundamental system of solutions of the SturmLiouville
equation, we study the infinite product representation of solutions of the systems. Then we
transform the SturmLiouville equation with
turning point to the
equation with singularity, then we study the asymptotic behavior of its solutions. Such
representations are relevant to the inverse spectral problem.
Keywords:turning point, singularity, SturmLiouville, infinite products, Hadamard's theorem, eigenvalues Categories:34B05, 34Lxx, 47E05 

2. CMB 2006 (vol 49 pp. 560)
 Luijk, Ronald van

A K3 Surface Associated With Certain Integral Matrices Having Integral Eigenvalues
In this article we will show that there are infinitely many
symmetric, integral $3 \times 3$ matrices, with zeros on the
diagonal, whose eigenvalues are all integral. We will do this by
proving that the rational points on a certain nonKummer, singular
K3 surface
are dense. We will also compute the entire NÃ©ronSeveri group of
this surface and find all low degree curves on it.
Keywords:symmetric matrices, eigenvalues, elliptic surfaces, K3 surfaces, NÃ©ronSeveri group, rational curves, Diophantine equations, arithmetic geometry, algebraic geometry, number theory Categories:14G05, 14J28, 11D41 

3. CMB 1999 (vol 42 pp. 169)
 Ding, Hongming

Heat Kernels of Lorentz Cones
We obtain an explicit formula for heat kernels of Lorentz cones, a
family of classical symmetric cones. By this formula, the heat
kernel of a Lorentz cone is expressed by a function of time $t$ and
two eigenvalues of an element in the cone. We obtain also upper and
lower bounds for the heat kernels of Lorentz cones.
Keywords:Lorentz cone, symmetric cone, Jordan algebra, heat kernel, heat equation, LaplaceBeltrami operator, eigenvalues Categories:35K05, 43A85, 35K15, 80A20 
