1. CMB 2011 (vol 56 pp. 3)
 Aïssiou, Tayeb

Semiclassical Limits of Eigenfunctions on Flat $n$Dimensional Tori
We provide a proof of a conjecture by Jakobson, Nadirashvili, and
Toth stating
that on an $n$dimensional flat torus $\mathbb T^{n}$, and the Fourier transform
of squares of the eigenfunctions $\varphi_\lambda^2$ of the Laplacian have
uniform $l^n$ bounds that do not depend on the eigenvalue $\lambda$. The proof
is a generalization of an argument by Jakobson, et al. for the
lower dimensional cases. These results imply uniform bounds for semiclassical
limits on $\mathbb T^{n+2}$. We also prove a geometric lemma that bounds the number of
codimensionone simplices satisfying a certain restriction on an
$n$dimensional sphere $S^n(\lambda)$ of radius $\sqrt{\lambda}$, and we use it in
the proof.
Keywords:semiclassical limits, eigenfunctions of Laplacian on a torus, quantum limits Categories:58G25, 81Q50, 35P20, 42B05 

2. CMB 2006 (vol 49 pp. 358)
 Khalil, Abdelouahed El; Manouni, Said El; Ouanan, Mohammed

On the Principal Eigencurve of the $p$Laplacian: Stability Phenomena
We show that each point of the principal eigencurve of the
nonlinear problem
$$
\Delta_{p}u\lambda m(x)u^{p2}u=\muu^{p2}u \quad
\text{in } \Omega,
$$
is stable (continuous) with respect to the exponent $p$ varying in
$(1,\infty)$; we also prove some convergence results
of the principal eigenfunctions corresponding.
Keywords:$p$Laplacian with indefinite weight, principal eigencurve, principal eigenvalue, principal eigenfunction, stability Categories:35P30, 35P60, 35J70 
