1. CMB Online first
 Jeong, Imsoon; de Dios Pérez, Juan; Suh, Young Jin; Woo, Changhwa

Lie derivatives and Ricci tensor on real hypersurfaces in complex twoplane Grassmannians
On a real hypersurface $M$ in a complex twoplane Grassmannian
$G_2({\mathbb C}^{m+2})$ we have the Lie derivation ${\mathcal
L}$ and a differential operator of order one associated to the
generalized TanakaWebster connection $\widehat {\mathcal L}
^{(k)}$. We give a classification of real hypersurfaces $M$ on
$G_2({\mathbb C}^{m+2})$ satisfying
$\widehat {\mathcal L} ^{(k)}_{\xi}S={\mathcal L}_{\xi}S$, where
$\xi$ is the Reeb vector field on $M$ and $S$ the Ricci tensor
of $M$.
Keywords:real hypersurface, complex twoplane Grassmannian, Hopf hypersurface, shape operator, Ricci tensor, Lie derivation Categories:53C40, 53C15 

2. CMB Online first
 MirandaNeto, Cleto Brasileiro

A moduletheoretic characterization of algebraic hypersurfaces
In this note we prove the following surprising characterization:
if
$X\subset {\mathbb A}^n$ is an (embedded, nonempty, proper)
algebraic variety defined over a
field $k$ of characteristic zero, then $X$ is a hypersurface
if and only if the module $T_{{\mathcal O}_{{\mathbb
A}^n}/k}(X)$ of logarithmic vector fields of
$X$ is a reflexive ${\mathcal
O}_{{\mathbb A}^n}$module. As a consequence of this result,
we derive that if $T_{{\mathcal O}_{{\mathbb A}^n}/k}(X)$ is a
free ${\mathcal
O}_{{\mathbb A}^n}$module, which is shown to be equivalent
to the freeness of the $t$th exterior power of $T_{{\mathcal O}_{{\mathbb
A}^n}/k}(X)$ for some (in fact, any) $t\leq n$, then necessarily
$X$ is a Saito free divisor.
Keywords:hypersurface, logarithmic vector field, logarithmic derivation, free divisor Categories:14J70, 13N15, 32S22, 13C05, 13C10, 14N20, , , , , 14C20, 32M25 

3. CMB 2016 (vol 60 pp. 721)
 Eroǧlu, Münevver Pınar; Argaç, Nurcan

On Identities with Composition of Generalized Derivations
Let $R$ be a prime ring with extended
centroid $C$, $Q$ maximal right ring of quotients of $R$, $RC$
central closure of $R$ such that $dim_{C}(RC)
\gt 4$, $f(X_{1},\dots,X_{n})$
a multilinear polynomial over $C$ which is not centralvalued
on $R$ and $f(R)$ the set of all evaluations of the multilinear
polynomial $f\big(X_{1},\dots,X_{n}\big)$ in $R$. Suppose that
$G$ is a nonzero generalized derivation of $R$ such that $G^2\big(u\big)u
\in C$ for all $u\in f(R)$ then one of the following conditions
holds:
(I) there exists $a\in Q$ such that $a^2=0$ and
either $G(x)=ax$ for all $x\in R$ or $G(x)=xa$ for all $x\in
R$;
(II) there exists $a\in Q$ such that $0\neq a^2\in
C$ and either $G(x)=ax$ for all $x\in R$ or $G(x)=xa$ for all
$x\in R$ and $f(X_{1},\dots,X_{n})^{2}$ is centralvalued on
$R$;
(III) $char(R)=2$ and one of the following holds:
(i) there exist $a, b\in Q$ such that $G(x)=ax+xb$ for all
$x\in R$ and $a^{2}=b^{2}\in C$;
(ii) there exist $a, b\in Q$ such that $G(x)=ax+xb$ for all
$x\in R$, $a^{2}, b^{2}\in C$ and $f(X_{1},\ldots,X_{n})^{2}$
is centralvalued on $R$;
(iii) there exist $a \in Q$ and an $X$outer derivation $d$
of $R$ such that $G(x)=ax+d(x)$ for all $x\in R$, $d^2=0$ and
$a^2+d(a)=0$;
(iv) there exist $a \in Q$ and an $X$outer derivation $d$
of $R$ such that $G(x)=ax+d(x)$ for all $x\in R$, $d^2=0$,
$a^2+d(a)\in C$ and $f(X_{1},\dots,X_{n})^{2}$ is centralvalued
on $R$.
Moreover, we characterize the form of nonzero generalized derivations
$G$ of $R$ satisfying $G^2(x)=\lambda x$ for all $x\in R$, where
$\lambda \in C$.
Keywords:prime ring, generalized derivation, composition, extended centroid, multilinear polynomial, maximal right ring of quotients Categories:16N60, 16N25 

4. CMB 2016 (vol 59 pp. 258)
 De Filippis, Vincenzo

Annihilators and Power Values of Generalized Skew Derivations on Lie Ideals
Let $R$ be a prime ring of characteristic different from
$2$, $Q_r$ be its right Martindale quotient ring and
$C$ be its extended centroid. Suppose that $F$ is
a generalized skew derivation of $R$, $L$ a noncentral Lie ideal
of $R$, $0 \neq a\in R$,
$m\geq 0$ and $n,s\geq 1$ fixed integers. If
\[
a\biggl(u^mF(u)u^n\biggr)^s=0
\]
for all $u\in L$, then either $R\subseteq M_2(C)$, the ring of
$2\times 2$ matrices over $C$, or $m=0$ and there exists $b\in
Q_r$ such that
$F(x)=bx$, for any $x\in R$, with $ab=0$.
Keywords:generalized skew derivation, prime ring Categories:16W25, 16N60 

5. CMB 2015 (vol 58 pp. 233)
 Bergen, Jeffrey

Affine Actions of $U_q(sl(2))$ on Polynomial Rings
We classify the affine actions of $U_q(sl(2))$ on commutative
polynomial rings in $m \ge 1$ variables.
We show that, up to scalar multiplication, there are two possible
actions.
In addition, for each action, the subring of invariants is a
polynomial ring in either $m$ or $m1$ variables,
depending upon whether $q$ is or is not a root of $1$.
Keywords:skew derivation, quantum group, invariants Categories:16T20, 17B37, 20G42 

6. CMB 2015 (vol 58 pp. 263)
 De Filippis, Vincenzo; Mamouni, Abdellah; Oukhtite, Lahcen

Generalized Jordan Semiderivations in Prime Rings
Let $R$ be a ring, $g$ an endomorphism of $R$.
The additive mapping $d\colon R\rightarrow R$ is called Jordan semiderivation of $R$, associated with $g$, if
$$d(x^2)=d(x)x+g(x)d(x)=d(x)g(x)+xd(x)\quad \text{and}\quad d(g(x))=g(d(x))$$
for all $x\in R$.
The additive mapping $F\colon R\rightarrow R$ is called generalized Jordan semiderivation of $R$, related to the Jordan semiderivation $d$ and endomorphism $g$, if
$$F(x^2)=F(x)x+g(x)d(x)=F(x)g(x)+xd(x)\quad \text{and}\quad F(g(x))=g(F(x))$$
for all $x\in R$.
In the present paper we prove that
if $R$ is a prime ring of characteristic different from $2$, $g$ an endomorphism of $R$, $d$ a Jordan semiderivation associated with $g$, $F$ a generalized Jordan semiderivation associated with $d$ and $g$,
then $F$ is a generalized semiderivation of $R$ and $d$ is a semiderivation of $R.$ Moreover, if $R$ is commutative then $F=d$.
Keywords:semiderivation, generalized semiderivation, Jordan semiderivation, prime ring Category:16W25 

7. CMB 2014 (vol 57 pp. 609)
 NasrIsfahani, Alireza

Jacobson Radicals of Skew Polynomial Rings of Derivation Type
We provide necessary and sufficient conditions for a skew polynomial ring of derivation type to be semiprimitive, when the base ring has no nonzero nil ideals. This extends existing results on the Jacobson radical of skew polynomial rings of derivation
type.
Keywords:skew polynomial rings, Jacobson radical, derivation Categories:16S36, 16N20 

8. CMB 2013 (vol 57 pp. 270)
 Didas, Michael; Eschmeier, Jörg

Derivations on Toeplitz Algebras
Let $H^2(\Omega)$ be the Hardy space on a strictly pseudoconvex domain $\Omega \subset
\mathbb{C}^n$,
and let $A \subset L^\infty(\partial \Omega)$ denote the subalgebra of all $L^\infty$functions $f$
with compact Hankel operator $H_f$. Given any closed subalgebra $B \subset A$ containing $C(\partial \Omega)$,
we describe the first Hochschild cohomology group of the
corresponding Toeplitz algebra $\mathcal(B) \subset B(H^2(\Omega))$.
In particular, we show that every derivation on $\mathcal{T}(A)$ is inner. These results are new even for $n=1$,
where it follows that every derivation on $\mathcal{T}(H^\infty+C)$ is inner, while there are noninner
derivations on $\mathcal{T}(H^\infty+C(\partial \mathbb{B}_n))$ over
the unit ball $\mathbb{B}_n$ in dimension $n\gt 1$.
Keywords:derivations, Toeplitz algebras, strictly pseudoconvex domains Categories:47B47, 47B35, 47L80 

9. CMB 2012 (vol 57 pp. 51)
 Fošner, Ajda; Lee, TsiuKwen

Jordan $*$Derivations of FiniteDimensional Semiprime Algebras
In the paper, we characterize Jordan $*$derivations of a $2$torsion
free, finitedimensional semiprime algebra $R$ with involution $*$. To
be precise, we prove the theorem: Let $deltacolon R o R$ be a Jordan
$*$derivation. Then there exists a $*$algebra decomposition
$R=Uoplus V$ such that both $U$ and $V$ are invariant under
$delta$. Moreover, $*$ is the identity map of $U$ and $delta,_U$ is a
derivation, and the Jordan $*$derivation $delta,_V$ is inner.
We also prove the theorem: Let $R$ be a noncommutative, centrally
closed prime algebra with involution $*$, $operatorname{char},R
e 2$,
and let $delta$ be a nonzero Jordan $*$derivation of $R$. If $delta$ is
an elementary operator of $R$, then $operatorname{dim}_CRlt infty$ and
$delta$ is inner.
Keywords:semiprime algebra, involution, (inner) Jordan $*$derivation, elementary operator Categories:16W10, 16N60, 16W25 

10. CMB 2012 (vol 56 pp. 534)
 Filali, M.; Monfared, M. Sangani

A Cohomological Property of $\pi$invariant Elements
Let $A$ be a Banach algebra and $\pi \colon A \longrightarrow \mathscr L(H)$
be a continuous representation of $A$ on a separable Hilbert space $H$
with $\dim H =\frak m$. Let $\pi_{ij}$ be the coordinate functions of
$\pi$ with respect to an orthonormal basis and suppose that for each
$1\le j \le \frak m$, $C_j=\sum_{i=1}^{\frak m}
\\pi_{ij}\_{A^*}\lt \infty$ and $\sup_j C_j\lt \infty$. Under these
conditions, we call an element $\overline\Phi \in l^\infty (\frak m , A^{**})$
left $\pi$invariant if $a\cdot \overline\Phi ={}^t\pi (a) \overline\Phi$ for all
$a\in A$. In this paper we prove a link between the existence
of left $\pi$invariant elements and the vanishing of certain
Hochschild cohomology groups of $A$. Our results extend an earlier
result by Lau on $F$algebras and recent results of KaniuthLauPym
and the second named author in the special case that $\pi \colon A
\longrightarrow \mathbf C$ is a nonzero character on $A$.
Keywords:Banach algebras, $\pi$invariance, derivations, representations Categories:46H15, 46H25, 13N15 

11. CMB 2011 (vol 56 pp. 31)
 Ayuso, Fortuny P.

Derivations and Valuation Rings
A complete characterization of valuation rings closed for a
holomorphic derivation is given, following an idea of Seidenberg,
in dimension $2$.
Keywords:singular holomorphic foliation, derivation, valuation, valuation ring Categories:32S65, 13F30, 13A18 

12. CMB 2010 (vol 54 pp. 21)
 Bouali, S.; Echchad, M.

Generalized Dsymmetric Operators II
Let $H$ be a separable,
infinitedimensional, complex Hilbert space and let $A, B\in{\mathcal L
}(H)$, where ${\mathcal L}(H)$ is the algebra of all bounded linear
operators on $H$. Let $\delta_{AB}\colon {\mathcal L}(H)\rightarrow {\mathcal
L}(H)$ denote the generalized derivation $\delta_{AB}(X)=AXXB$.
This note will initiate a study on the class of pairs $(A,B)$ such
that $\overline{{\mathcal R}(\delta_{AB})}= \overline{{\mathcal
R}(\delta_{A^{\ast}B^{\ast}})}$.
Keywords:generalized derivation, adjoint, Dsymmetric operator, normal operator Categories:47B47, 47B10, 47A30 

13. CMB 2009 (vol 52 pp. 535)
 Daigle, Daniel; Kaliman, Shulim

A Note on Locally Nilpotent Derivations\\ and Variables of $k[X,Y,Z]$
We strengthen certain results
concerning actions of $(\Comp,+)$ on $\Comp^{3}$
and embeddings of $\Comp^{2}$ in $\Comp^{3}$,
and show that these results are in fact valid
over any field of characteristic zero.
Keywords:locally nilpotent derivations, group actions, polynomial automorphisms, variable, affine space Categories:14R10, 14R20, 14R25, 13N15 
