1. CMB 2015 (vol 58 pp. 818)
 Llibre, Jaume; Zhang, Xiang

On the Limit Cycles of Linear Differential Systems with Homogeneous Nonlinearities
We consider the class of polynomial differential systems of the
form
$\dot x= \lambda xy+P_n(x,y)$, $\dot y=x+\lambda y+ Q_n(x,y),$ where
$P_n$ and $Q_n$ are homogeneous polynomials of degree $n$. For
this
class of differential systems we summarize the known results
for the
existence of limit cycles, and we provide new results for their
nonexistence and existence.
Keywords:polynomial differential system, limit cycles, differential equations on the cylinder Categories:34C35, 34D30 

2. CMB 2015 (vol 59 pp. 144)
 Laterveer, Robert

A Brief Note Concerning Hard Lefschetz for Chow Groups
We formulate a conjectural hard Lefschetz property
for Chow groups, and prove this in some special cases: roughly
speaking, for varieties with finitedimensional motive, and
for varieties whose selfproduct has vanishing middledimensional
Griffiths group. An appendix includes related statements that
follow from results of Vial.
Keywords:algebraic cycles, Chow groups, finitedimensional motives Categories:14C15, 14C25, 14C30 

3. CMB 2014 (vol 58 pp. 356)
 Sebag, Julien

Homological Planes in the Grothendieck Ring of Varieties
In this note, we identify, in the Grothendieck group of complex
varieties $K_0(\mathrm Var_\mathbf{C})$, the classes of $\mathbf{Q}$homological
planes. Precisely, we prove that a connected smooth affine complex
algebraic surface $X$ is a $\mathbf{Q}$homological plane if
and only if $[X]=[\mathbf{A}^2_\mathbf{C}]$ in the ring $K_0(\mathrm Var_\mathbf{C})$
and $\mathrm{Pic}(X)_\mathbf{Q}:=\mathrm{Pic}(X)\otimes_\mathbf{Z}\mathbf{Q}=0$.
Keywords:motivic nearby cycles, motivic Milnor fiber, nearby motives Categories:14E05, 14R10 

4. CMB 2013 (vol 57 pp. 413)
 Samei, Karim

On the Comaximal Graph of a Commutative Ring
Let $R$ be a commutative ring with $1$. In [P. K. Sharma, S. M.
Bhatwadekar, A note on graphical representation of rings, J.
Algebra 176(1995) 124127], Sharma and Bhatwadekar defined a
graph on $R$, $\Gamma(R)$, with vertices as elements of $R$, where
two distinct vertices $a$ and $b$ are adjacent if and only if $Ra
+ Rb = R$. In this paper, we consider a subgraph $\Gamma_2(R)$ of
$\Gamma(R)$ which consists of nonunit elements. We investigate
the behavior of $\Gamma_2(R)$ and $\Gamma_2(R) \setminus \operatorname{J}(R)$,
where $\operatorname{J}(R)$ is the Jacobson radical of $R$. We associate the
ring properties of $R$, the graph properties of $\Gamma_2(R)$ and
the topological properties of $\operatorname{Max}(R)$. Diameter, girth, cycles
and dominating sets are investigated and the algebraic and the
topological characterizations are given for graphical properties
of these graphs.
Keywords:comaximal, Diameter, girth, cycles, dominating set Category:13A99 

5. CMB 2008 (vol 51 pp. 283)