1. CMB 2016 (vol 60 pp. 510)
 Haase, Christian; Hofmann, Jan

Convexnormal (Pairs of) Polytopes
In 2012 Gubeladze (Adv. Math. 2012)
introduced the notion of $k$convexnormal polytopes to show
that
integral polytopes all of whose edges are longer than $4d(d+1)$
have
the integer decomposition property.
In the first part of this paper we show that for lattice polytopes
there is no difference between $k$ and $(k+1)$convexnormality
(for
$k\geq 3 $) and improve the bound to $2d(d+1)$. In the second
part we
extend the definition to pairs of polytopes. Given two rational
polytopes $P$ and $Q$, where the normal fan of $P$ is a refinement
of
the normal fan of $Q$.
If every edge $e_P$ of $P$ is at least $d$ times as long as the
corresponding face (edge or vertex) $e_Q$ of $Q$, then $(P+Q)\cap
\mathbb{Z}^d
= (P\cap \mathbb{Z}^d ) + (Q \cap \mathbb{Z}^d)$.
Keywords:integer decomposition property, integrally closed, projectively normal, lattice polytopes Categories:52B20, 14M25, 90C10 

2. CMB 2016 (vol 60 pp. 721)
 Eroǧlu, Münevver Pınar; Argaç, Nurcan

On Identities with Composition of Generalized Derivations
Let $R$ be a prime ring with extended
centroid $C$, $Q$ maximal right ring of quotients of $R$, $RC$
central closure of $R$ such that $dim_{C}(RC)
\gt 4$, $f(X_{1},\dots,X_{n})$
a multilinear polynomial over $C$ which is not centralvalued
on $R$ and $f(R)$ the set of all evaluations of the multilinear
polynomial $f\big(X_{1},\dots,X_{n}\big)$ in $R$. Suppose that
$G$ is a nonzero generalized derivation of $R$ such that $G^2\big(u\big)u
\in C$ for all $u\in f(R)$ then one of the following conditions
holds:
(I) there exists $a\in Q$ such that $a^2=0$ and
either $G(x)=ax$ for all $x\in R$ or $G(x)=xa$ for all $x\in
R$;
(II) there exists $a\in Q$ such that $0\neq a^2\in
C$ and either $G(x)=ax$ for all $x\in R$ or $G(x)=xa$ for all
$x\in R$ and $f(X_{1},\dots,X_{n})^{2}$ is centralvalued on
$R$;
(III) $char(R)=2$ and one of the following holds:
(i) there exist $a, b\in Q$ such that $G(x)=ax+xb$ for all
$x\in R$ and $a^{2}=b^{2}\in C$;
(ii) there exist $a, b\in Q$ such that $G(x)=ax+xb$ for all
$x\in R$, $a^{2}, b^{2}\in C$ and $f(X_{1},\ldots,X_{n})^{2}$
is centralvalued on $R$;
(iii) there exist $a \in Q$ and an $X$outer derivation $d$
of $R$ such that $G(x)=ax+d(x)$ for all $x\in R$, $d^2=0$ and
$a^2+d(a)=0$;
(iv) there exist $a \in Q$ and an $X$outer derivation $d$
of $R$ such that $G(x)=ax+d(x)$ for all $x\in R$, $d^2=0$,
$a^2+d(a)\in C$ and $f(X_{1},\dots,X_{n})^{2}$ is centralvalued
on $R$.
Moreover, we characterize the form of nonzero generalized derivations
$G$ of $R$ satisfying $G^2(x)=\lambda x$ for all $x\in R$, where
$\lambda \in C$.
Keywords:prime ring, generalized derivation, composition, extended centroid, multilinear polynomial, maximal right ring of quotients Categories:16N60, 16N25 

3. CMB 2015 (vol 58 pp. 877)
 Zaatra, Mohamed

Generating Some Symmetric Semiclassical Orthogonal Polynomials
We show that if $v$ is a regular semiclassical form
(linear functional), then the symmetric form $u$ defined by the
relation
$x^{2}\sigma u = \lambda v$,
where $(\sigma f)(x)=f(x^{2})$ and the odd
moments of $u$ are $0$, is also
regular and semiclassical form for every
complex $\lambda $ except for a discrete set of numbers depending
on $v$. We give explicitly the threeterm recurrence relation
and the
structure relation coefficients of the orthogonal polynomials
sequence associated with $u$ and the class of the form $u$ knowing
that of $v$. We conclude with an illustrative example.
Keywords:orthogonal polynomials, quadratic decomposition, semiclassical forms, structure relation Categories:33C45, 42C05 

4. CMB 2015 (vol 58 pp. 610)
5. CMB 2013 (vol 57 pp. 870)
 Parlier, Hugo

A Short Note on Short Pants
It is a theorem of Bers that any closed hyperbolic surface admits a pants decomposition consisting of curves of bounded length where the bound only depends on the topology of the surface. The question of the quantification of the optimal constants has been well studied and the best upper bounds to date are linear in genus, a theorem of Buser and SeppÃ¤lÃ¤. The goal of this note is to give a short proof of a linear upper bound which slightly improve the best known bound.
Keywords:hyperbolic surfaces, geodesics, pants decompositions Categories:30F10, 32G15, 53C22 

6. CMB 2013 (vol 57 pp. 794)
 Fang, ZhongShan; Zhou, ZeHua

New Characterizations of the Weighted Composition Operators Between Bloch Type Spaces in the Polydisk
We give some new characterizations for compactness of weighted
composition operators $uC_\varphi$ acting on Blochtype spaces in
terms of the power of the components of $\varphi,$ where $\varphi$
is a holomorphic selfmap of the polydisk $\mathbb{D}^n,$ thus
generalizing the results obtained by HyvÃ¤rinen and
LindstrÃ¶m in 2012.
Keywords:weighted composition operator, compactness, Bloch type spaces, polydisk, several complex variables Categories:47B38, 47B33, 32A37, 45P05, 47G10 

7. CMB 2012 (vol 57 pp. 97)
 Levy, Jason

Rationality and the JordanGattiViniberghi decomposition
We verify
our earlier conjecture
and use it to prove that the
semisimple parts of the rational JordanKacVinberg decompositions of
a rational vector all lie in a single rational orbit.
Keywords:reductive group, $G$module, Jordan decomposition, orbit closure, rationality Categories:20G15, 14L24 

8. CMB 2012 (vol 56 pp. 606)
 Mazorchuk, Volodymyr; Zhao, Kaiming

Characterization of Simple Highest Weight Modules
We prove that for simple complex finite dimensional
Lie algebras, affine KacMoody Lie algebras, the
Virasoro algebra and the HeisenbergVirasoro algebra,
simple highest weight modules are characterized
by the property that all positive root elements
act on these modules locally nilpotently. We
also show that this is not the case for higher rank
Virasoro and for Heisenberg algebras.
Keywords:Lie algebra, highest weight module, triangular decomposition, locally nilpotent action Categories:17B20, 17B65, 17B66, 17B68 

9. CMB 2011 (vol 56 pp. 442)
 Zelenyuk, Yevhen

Closed Left Ideal Decompositions of $U(G)$
Let $G$ be an infinite discrete group and let $\beta G$ be the
StoneÄech compactification of $G$. We take the points of $Äta
G$ to be the ultrafilters on $G$, identifying the principal
ultrafilters with the points of $G$. The set $U(G)$ of uniform
ultrafilters on $G$ is a closed twosided ideal of $\beta G$. For
every $p\in U(G)$, define $I_p\subseteq\beta G$ by $I_p=\bigcap_{A\in
p}\operatorname{cl} (GU(A))$, where $U(A)=\{p\in U(G):A\in p\}$. We show
that if $G$ is a regular cardinal, then $\{I_p:p\in U(G)\}$ is the
finest decomposition of $U(G)$ into closed left ideals of $\beta G$
such that the corresponding quotient space of $U(G)$ is Hausdorff.
Keywords:StoneÄech compactification, uniform ultrafilter, closed left ideal, decomposition Categories:22A15, 54H20, 22A30, 54D80 

10. CMB 2011 (vol 56 pp. 229)
 Arvanitidis, Athanasios G.; Siskakis, Aristomenis G.

CesÃ ro Operators on the Hardy Spaces of the HalfPlane
In this article we study the CesÃ ro
operator
$$
\mathcal{C}(f)(z)=\frac{1}{z}\int_{0}^{z}f(\zeta)\,d\zeta,
$$
and its companion operator $\mathcal{T}$ on Hardy spaces of the
upper half plane. We identify $\mathcal{C}$ and $\mathcal{T}$ as
resolvents for appropriate semigroups of composition operators and we
find the norm and the spectrum in each case. The relation of
$\mathcal{C}$ and $\mathcal{T}$ with the corresponding Ces\`{a}ro
operators on Lebesgue spaces $L^p(\mathbb R)$ of the boundary line is also
discussed.
Keywords:CesÃ ro operators, Hardy spaces, semigroups, composition operators Categories:47B38, 30H10, 47D03 

11. CMB 2011 (vol 56 pp. 70)
 Hrubeš, P.; Wigderson, A.; Yehudayoff, A.

An Asymptotic Bound on the Composition Number of Integer Sums of Squares Formulas
Let $\sigma_{\mathbb Z}(k)$ be the smallest $n$ such that there exists an
identity
\[
(x_1^2 + x_2^2 + \cdots + x_k^2) \cdot (y_1^2 + y_2^2 + \cdots + y_k^2)
= f_1^2 + f_2^2 + \cdots + f_n^2,
\]
with $f_1,\dots,f_n$ being polynomials with integer coefficients in
the variables $x_1,\dots,x_k$ and $y_1,\dots,y_k$. We prove that
$\sigma_{\mathbb Z}(k) \geq \Omega(k^{6/5})$.
Keywords:composition formulas, sums of squares, RadonHurwitz number Category:11E25 

12. CMB 2011 (vol 55 pp. 697)
 Borwein, Jonathan M.; Vanderwerff, Jon

Constructions of Uniformly Convex Functions
We give precise conditions under which the composition
of a norm with a convex function yields a
uniformly convex function on a Banach space.
Various applications are given to functions of power type.
The results are dualized to study uniform smoothness
and several examples are provided.
Keywords:convex function, uniformly convex function, uniformly smooth function, power type, Fenchel conjugate, composition, norm Categories:52A41, 46G05, 46N10, 49J50, 90C25 

13. CMB 2011 (vol 55 pp. 303)
 Han, Yongsheng; Lee, MingYi; Lin, ChinCheng

Atomic Decomposition and Boundedness of Operators on Weighted Hardy Spaces
In this article, we establish a new atomic decomposition for $f\in L^2_w\cap H^p_w$,
where the decomposition converges in $L^2_w$norm rather than in the distribution sense.
As applications of this decomposition, assuming that $T$ is a linear
operator bounded on $L^2_w$ and $0
Keywords:$A_p$ weights, atomic decomposition, CalderÃ³n reproducing formula, weighted Hardy spaces Categories:42B25, 42B30 

14. CMB 2011 (vol 55 pp. 441)
 Zorboska, Nina

Univalently Induced, Closed Range, Composition Operators on the Blochtype Spaces
While there is a large variety of univalently induced closed range
composition operators on the Bloch space,
we show that the only univalently induced, closed range, composition
operators on the Blochtype spaces $B^{\alpha}$ with $\alpha \ne 1$
are the ones induced by a disc automorphism.
Keywords:composition operators, Blochtype spaces, closed range, univalent Categories:47B35, 32A18 

15. CMB 2009 (vol 53 pp. 278)
 Galego, Elói M.

CantorBernstein Sextuples for Banach Spaces
Let $X$ and $Y$ be Banach spaces isomorphic
to complemented subspaces of each other with supplements $A$ and
$B$. In 1996, W. T. Gowers solved the SchroederBernstein (or
CantorBernstein) problem for Banach spaces by showing that $X$ is not
necessarily isomorphic to $Y$. In this paper, we obtain a necessary
and sufficient condition on the sextuples $(p, q, r, s, u, v)$ in
$\mathbb N$
with $p+q \geq 1$, $r+s \geq 1$ and $u, v \in \mathbb N^*$, to provide that
$X$ is isomorphic to $Y$, whenever these spaces satisfy the following
decomposition scheme
$$
A^u \sim X^p \oplus Y^q, \quad
B^v \sim X^r \oplus Y^s.
$$
Namely, $\Phi=(pu)(sv)(q+u)(r+v)$ is different from zero and $\Phi$
divides $p+q$ and $r+s$. These sextuples are called CantorBernstein
sextuples for Banach spaces. The simplest case $(1, 0, 0, 1, 1, 1)$
indicates the wellknown PeÅczyÅski's decomposition method in
Banach space. On the other hand, by interchanging some Banach spaces
in the above decomposition scheme, refinements of
the SchroederBernstein problem become evident.
Keywords:Pel czyÅski's decomposition method, SchroederBernstein problem Categories:46B03, 46B20 

16. CMB 2008 (vol 51 pp. 195)
17. CMB 2007 (vol 50 pp. 504)
 Dukes, Peter; Ling, Alan C. H.

Asymptotic Existence of Resolvable Graph Designs
Let $v \ge k \ge 1$ and $\lam \ge 0$ be integers. A \emph{block
design} $\BD(v,k,\lambda)$ is a collection $\cA$ of $k$subsets of a
$v$set $X$ in which every unordered pair of elements from $X$ is
contained in exactly $\lambda$ elements of $\cA$. More generally, for a
fixed simple graph $G$, a \emph{graph design} $\GD(v,G,\lambda)$ is a
collection $\cA$ of graphs isomorphic to $G$ with vertices in $X$ such
that every unordered pair of elements from $X$ is an edge of exactly
$\lambda$ elements of $\cA$. A famous result of Wilson says that for a
fixed $G$ and $\lambda$, there exists a $\GD(v,G,\lambda)$ for all
sufficiently large $v$ satisfying certain necessary conditions. A
block (graph) design as above is \emph{resolvable} if $\cA$ can be
partitioned into partitions of (graphs whose vertex sets partition)
$X$. Lu has shown asymptotic existence in $v$ of resolvable
$\BD(v,k,\lambda)$, yet for over twenty years the analogous problem for
resolvable $\GD(v,G,\lambda)$ has remained open. In this paper, we settle
asymptotic existence of resolvable graph designs.
Keywords:graph decomposition, resolvable designs Categories:05B05, 05C70, 05B10 

18. CMB 2004 (vol 47 pp. 49)
 Lindström, Mikael; Makhmutov, Shamil; Taskinen, Jari

The Essential Norm of a Blochto$Q_p$ Composition Operator
The $Q_p$ spaces coincide with the Bloch space for $p>1$ and are
subspaces of $\BMOA$ for $0
Keywords:Bloch space, little Bloch space, $\BMOA$, $\VMOA$, $Q_p$ spaces,, composition operator, compact operator, essential norm Categories:47B38, 47B10, 46E40, 46E15 

19. CMB 2003 (vol 46 pp. 356)
20. CMB 1999 (vol 42 pp. 139)