Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All articles in the CMB digital archive with keyword borderline Sobolev inequalities

  Expand all        Collapse all Results 1 - 1 of 1

1. CMB 1999 (vol 42 pp. 478)

Pruss, Alexander R.
A Remark On the Moser-Aubin Inequality For Axially Symmetric Functions On the Sphere
Let $\scr S_r$ be the collection of all axially symmetric functions $f$ in the Sobolev space $H^1(\Sph^2)$ such that $\int_{\Sph^2} x_ie^{2f(\mathbf{x})} \, d\omega(\mathbf{x})$ vanishes for $i=1,2,3$. We prove that $$ \inf_{f\in \scr S_r} \frac12 \int_{\Sph^2} |\nabla f|^2 \, d\omega + 2\int_{\Sph^2} f \, d\omega- \log \int_{\Sph^2} e^{2f} \, d\omega > -\oo, $$ and that this infimum is attained. This complements recent work of Feldman, Froese, Ghoussoub and Gui on a conjecture of Chang and Yang concerning the Moser-Aubin inequality.

Keywords:Moser inequality, borderline Sobolev inequalities, axially symmetric functions
Categories:26D15, 58G30

© Canadian Mathematical Society, 2018 :