1. CMB Online first
 Schmidt, Simon; Weber, Moritz

Quantum symmetries of graph $C^*$algebras
The study of graph $C^*$algebras has a long history in operator
algebras. Surprisingly, their quantum symmetries have never been
computed so far. We close this gap by proving that the quantum
automorphism group of a finite, directed graph without multiple
edges acts maximally on the corresponding graph $C^*$algebra.
This shows that the quantum symmetry of a graph coincides with
the quantum symmetry of the graph $C^*$algebra. In our result,
we use the definition of quantum automorphism groups of graphs
as given by Banica in 2005. Note that Bichon gave a different
definition in 2003; our action is inspired from his work. We
review and compare these two definitions and we give a complete
table of quantum automorphism groups (with respect to either
of the two definitions) for undirected graphs on four vertices.
Keywords:finite graph, graph automorphism, automorphism group, quantum automorphism, graph C*algebra, quantum group, quantum symmetry Categories:46LXX, 05CXX, 20B25 

2. CMB 2016 (vol 59 pp. 346)
 Krantz, Steven

On a Theorem of Bers, with Applications to the Study of Automorphism Groups of Domains
We study and generalize a classical theorem of L. Bers that classifies
domains up to biholomorphic equivalence in terms of the algebras
of
holomorphic functions on those domains. Then we develop applications
of these results to the study of domains with noncompact automorphism
group.
Keywords:Bers's theorem, algebras of holomorphic functions, noncompact automorphism group, biholomorphic equivalence Categories:32A38, 30H50, 32A10, 32M99 

3. CMB 2014 (vol 58 pp. 196)
4. CMB 2009 (vol 52 pp. 366)
 Gévay, Gábor

A Class of Cellulated Spheres with NonPolytopal Symmetries
We construct, for all $d\geq 4$, a cellulation of $\mathbb S^{d1}$.
We prove that these cellulations cannot be polytopal with maximal
combinatorial symmetry. Such nonrealizability phenomenon was first
described in dimension 4 by Bokowski, Ewald and Kleinschmidt, and,
to the knowledge of the author, until now there have not been any
known examples in higher dimensions. As a starting point for the
construction, we introduce a new class of (Wythoffian) uniform
polytopes, which we call duplexes. In proving our main result,
we use some tools that we developed earlier while studying perfect
polytopes. In particular, we prove perfectness of the duplexes;
furthermore, we prove and make use of the perfectness of another
new class of polytopes which we obtain by a variant of the socalled
$E$construction introduced by Eppstein, Kuperberg and Ziegler.
Keywords:CW sphere, polytopality, automorphism group, symmetry group, uniform polytope Categories:52B11, 52B15, 52B70 

5. CMB 2007 (vol 50 pp. 206)
 Golasiński, Marek; Gonçalves, Daciberg Lima

Spherical Space Forms: Homotopy Types and SelfEquivalences for the Group $({\mathbb Z}/a\rtimes{\mathbb Z}/b) \times SL_2\,(\mathbb{F}_p)$
Let $G=({\mathbb Z}/a\rtimes{\mathbb Z}/b) \times
\SL_2(\mathbb{F}_p)$, and let $X(n)$ be an $n$dimensional
$CW$complex of the homotopy type of an $n$sphere. We study the
automorphism group $\Aut (G)$ in order to compute the number of
distinct homotopy types of spherical space forms with respect to free
and cellular $G$actions on all $CW$complexes $X(2dn1)$, where $2d$
is the period of $G$. The groups ${\mathcal E}(X(2dn1)/\mu)$ of self
homotopy equivalences of space forms $X(2dn1)/\mu$ associated with
free and cellular $G$actions $\mu$ on $X(2dn1)$ are determined as
well.
Keywords:automorphism group, $CW$complex, free and cellular $G$action, group of self homotopy equivalences, LyndonHochschildSerre spectral sequence, special (linear) group, spherical space form Categories:55M35, 55P15, 20E22, 20F28, 57S17 
