1. CMB 2015 (vol 58 pp. 548)
 Lü, Guangshi; Sankaranarayanan, Ayyadurai

Higher Moments of Fourier Coefficients of Cusp Forms
Let $S_{k}(\Gamma)$ be the space of holomorphic cusp
forms of even integral weight $k$ for the full modular group
$SL(2, \mathbb{Z})$. Let
$\lambda_f(n)$, $\lambda_g(n)$, $\lambda_h(n)$ be the $n$th normalized
Fourier
coefficients of three distinct holomorphic primitive cusp forms
$f(z) \in S_{k_1}(\Gamma), g(z) \in S_{k_2}(\Gamma), h(z) \in
S_{k_3}(\Gamma)$ respectively.
In this paper we study the cancellations of sums related to arithmetic
functions, such as $\lambda_f(n)^4\lambda_g(n)^2$, $\lambda_g(n)^6$,
$\lambda_g(n)^2\lambda_h(n)^4$, and $\lambda_g(n^3)^2$ twisted
by
the arithmetic function $\lambda_f(n)$.
Keywords:Fourier coefficients of automorphic forms, Dirichlet series, triple product $L$function, Perron's formula Categories:11F30, 11F66 
