location:  Publications → journals
Search results

Search: All articles in the CMB digital archive with keyword Salem number

 Expand all        Collapse all Results 1 - 3 of 3

1. CMB 2002 (vol 45 pp. 196)

Dubickas, ArtÅ«ras
 Mahler Measures Close to an Integer We prove that the Mahler measure of an algebraic number cannot be too close to an integer, unless we have equality. The examples of certain Pisot numbers show that the respective inequality is sharp up to a constant. All cases when the measure is equal to the integer are described in terms of the minimal polynomials. Keywords:Mahler measure, PV numbers, Salem numbersCategories:11R04, 11R06, 11R09, 11J68

2. CMB 2002 (vol 45 pp. 231)

Hironaka, Eriko
 Erratum:~~The Lehmer Polynomial and Pretzel Links Erratum to {\it The Lehmer Polynomial and Pretzel Links}, Canad. J. Math. {\bf 44}(2001), 440--451. Keywords:Alexander polynomial, pretzel knot, Mahler measure, Salem number, Coxeter groupsCategories:57M05, 57M25, 11R04, 11R27

3. CMB 2001 (vol 44 pp. 440)

Hironaka, Eriko
 The Lehmer Polynomial and Pretzel Links In this paper we find a formula for the Alexander polynomial $\Delta_{p_1,\dots,p_k} (x)$ of pretzel knots and links with $(p_1,\dots,p_k, \nega 1)$ twists, where $k$ is odd and $p_1,\dots,p_k$ are positive integers. The polynomial $\Delta_{2,3,7} (x)$ is the well-known Lehmer polynomial, which is conjectured to have the smallest Mahler measure among all monic integer polynomials. We confirm that $\Delta_{2,3,7} (x)$ has the smallest Mahler measure among the polynomials arising as $\Delta_{p_1,\dots,p_k} (x)$. Keywords:Alexander polynomial, pretzel knot, Mahler measure, Salem number, Coxeter groupsCategories:57M05, 57M25, 11R04, 11R27
 top of page | contact us | privacy | site map |