Canadian Mathematical Society www.cms.math.ca
 location:  Publications → journals
Search results

Search: All articles in the CMB digital archive with keyword MÃ¼ntz polynomials

 Expand all        Collapse all Results 1 - 1 of 1

1. CMB 2011 (vol 56 pp. 194)

Stefánsson, Úlfar F.
 On the Smallest and Largest Zeros of MÃ¼ntz-Legendre Polynomials MÃ¼ntz-Legendre polynomials $L_n(\Lambda;x)$ associated with a sequence $\Lambda=\{\lambda_k\}$ are obtained by orthogonalizing the system $(x^{\lambda_0}, x^{\lambda_1}, x^{\lambda_2}, \dots)$ in $L_2[0,1]$ with respect to the Legendre weight. If the $\lambda_k$'s are distinct, it is well known that $L_n(\Lambda;x)$ has exactly $n$ zeros $l_{n,n}\lt l_{n-1,n}\lt \cdots \lt l_{2,n}\lt l_{1,n}$ on $(0,1)$. First we prove the following global bound for the smallest zero, $$\exp\biggl(-4\sum_{j=0}^n \frac{1}{2\lambda_j+1}\biggr) \lt l_{n,n}.$$ An important consequence is that if the associated MÃ¼ntz space is non-dense in $L_2[0,1]$, then $$\inf_{n}x_{n,n}\geq \exp\biggl({-4\sum_{j=0}^{\infty} \frac{1}{2\lambda_j+1}}\biggr)\gt 0,$$ so the elements $L_n(\Lambda;x)$ have no zeros close to 0. Furthermore, we determine the asymptotic behavior of the largest zeros; for $k$ fixed, $$\lim_{n\rightarrow\infty} \vert \log l_{k,n}\vert \sum_{j=0}^n (2\lambda_j+1)= \Bigl(\frac{j_k}{2}\Bigr)^2,$$ where $j_k$ denotes the $k$-th zero of the Bessel function $J_0$. Keywords:MÃ¼ntz polynomials, MÃ¼ntz-Legendre polynomialsCategories:42C05, 42C99, 41A60, 30B50
 top of page | contact us | privacy | site map |

© Canadian Mathematical Society, 2017 : https://cms.math.ca/