CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword Krull dimension

  Expand all        Collapse all Results 1 - 2 of 2

1. CMB Online first

Bavula, V. V.; Lu, T.
Classification of simple weight modules over the Schrödinger algebra
A classification of simple weight modules over the Schrödinger algebra is given. The Krull and the global dimensions are found for the centralizer $C_{\mathcal{S}}(H)$ (and some of its prime factor algebras) of the Cartan element $H$ in the universal enveloping algebra $\mathcal{S}$ of the Schrödinger (Lie) algebra. The simple $C_{\mathcal{S}}(H)$-modules are classified. The Krull and the global dimensions are found for some (prime) factor algebras of the algebra $\mathcal{S}$ (over the centre). It is proved that some (prime) factor algebras of $\mathcal{S}$ and $C_{\mathcal{S}}(H)$ are tensor homological/Krull minimal.

Keywords:weight module, simple module, centralizer, Krull dimension, global dimension, tensor homological minimal algebra, tensor Krull minimal algebra
Categories:17B10, 17B20, 17B35, 16E10, 16P90, 16P40, 16P50

2. CMB 2012 (vol 56 pp. 491)

Bahmanpour, Kamal
A Note on Homological Dimensions of Artinian Local Cohomology Modules
Let $(R,{\frak m})$ be a non-zero commutative Noetherian local ring (with identity), $M$ be a non-zero finitely generated $R$-module. In this paper for any ${\frak p}\in {\rm Spec}(R)$ we show that $ \operatorname{{\rm injdim_{_{R_{\frak p}}}}} H^{i-\dim(R/{\frak p})}_{{\frak p}R_{\frak p}}(M_{\frak p})$ and ${\rm fd}_{R_{\p}} H^{i-\dim(R/{\frak p})}_{{\frak p}R_{\frak p}}(M_{\frak p})$ are bounded from above by $ \operatorname{{\rm injdim_{_{R}}}} H^i_{\frak m}(M)$ and $ {\rm fd}_R H^i_{\frak m}(M)$ respectively, for all integers $i\geq \dim(R/{\frak p})$.

Keywords:cofinite modules, flat dimension, injective dimension, Krull dimension, local cohomology
Category:13D45

© Canadian Mathematical Society, 2017 : https://cms.math.ca/