CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All articles in the CMB digital archive with keyword Hardy space

  Expand all        Collapse all Results 1 - 17 of 17

1. CMB Online first

Reijonen, Atte
Remark on integral means of derivatives of Blaschke products
If $B$ is the Blachke product with zeros $\{z_n\}$, then $|B'(z)|\le \Psi_B(z)$, where $$\Psi_B(z)=\sum_n \frac{1-|z_n|^2}{|1-\overline{z}_nz|^2}.$$ Moreover, it is a well-known fact that, for $0\lt p\lt \infty$, $$M_p(r,B')= \left(\frac{1}{2\pi}\int_{0}^{2\pi} |B'(re^{i\t})|^p\,d\t \right)^{1/p}, \quad 0\le r\lt 1,$$ is bounded if and only if $M_p(r,\Psi_B)$ is bounded. We find a Blaschke product $B_0$ such that $M_p(r,B_0')$ and $M_p(r,\Psi_{B_0})$ are not comparable for any $\frac12\lt p\lt \infty$. In addition, it is shown that, if $0\lt p\lt \infty$, $B$ is a Carleson-Newman Blaschke product and a weight $\omega$ satisfies a certain regularity condition, then $$ \int_\mathbb{D} |B'(z)|^p\omega(z)\,dA(z)\asymp \int_\mathbb{D} \Psi_B(z)^p\omega(z)\,dA(z), $$ where $dA(z)$ is the Lebesgue area measure on the unit disc.

Keywords:Bergman space, Blaschke product, Hardy space, integral mean
Categories:30J10, 30H10, 30H20

2. CMB Online first

Rocha, Pablo Alejandro
A remark on certain integral operators of fractional type
For $m, n \in \mathbb{N}$, $1\lt m \leq n$, we write $n = n_1 + \dots + n_m$ where $\{ n_1, \dots, n_m \} \subset \mathbb{N}$. Let $A_1, \dots, A_m$ be $n \times n$ singular real matrices such that $\bigoplus_{i=1}^{m} \bigcap_{1\leq j \neq i \leq m} \mathcal{N}_j = \mathbb{R}^{n},$ where $\mathcal{N}_j = \{ x : A_j x = 0 \}$, $dim(\mathcal{N}_j)=n-n_j$ and $A_1+ \dots+ A_m$ is invertible. In this paper we study integral operators of the form $T_{r}f(x)= \int_{\mathbb{R}^{n}} \, |x-A_1 y|^{-n_1 + \alpha_1} \cdots |x-A_m y|^{-n_m + \alpha_m} f(y) \, dy,$ $n_1 + \dots + n_m = n$, $\frac{\alpha_1}{n_1} = \dots = \frac{\alpha_m}{n_m}=r$, $0 \lt r \lt 1$, and the matrices $A_i$'s are as above. We obtain the $H^{p}(\mathbb{R}^{n})-L^{q}(\mathbb{R}^{n})$ boundedness of $T_r$ for $0\lt p\lt \frac{1}{r}$ and $\frac{1}{q}=\frac{1}{p} - r$.

Keywords:integral operator, Hardy space
Categories:42B20, 42B30

3. CMB Online first

Cui, Xiaohui; Wang, Chunjie; Zhu, Kehe
Area Integral Means of Analytic Functions in the Unit Disk
For an analytic function $f$ on the unit disk $\mathbb D$ we show that the $L^2$ integral mean of $f$ on $c\lt |z|\lt r$ with respect to the weighted area measure $(1-|z|^2)^\alpha\,dA(z)$ is a logarithmically convex function of $r$ on $(c,1)$, where $-3\le\alpha\le0$ and $c\in[0,1)$. Moreover, the range $[-3,0]$ for $\alpha$ is best possible. When $c=0$, our arguments here also simplify the proof for several results we obtained in earlier papers.

Keywords:logarithmic convexity, area integral mean, Bergman space, Hardy space
Categories:30H10, 30H20

4. CMB 2017 (vol 60 pp. 571)

Li, Ji; Wick, Brett D.
Weak Factorizations of the Hardy space $H^1(\mathbb{R}^n)$ in terms of Multilinear Riesz Transforms
This paper provides a constructive proof of the weak factorization of the classical Hardy space $H^1(\mathbb{R}^n)$ in terms of multilinear Riesz transforms. As a direct application, we obtain a new proof of the characterization of ${\rm BMO}(\mathbb{R}^n)$ (the dual of $H^1(\mathbb{R}^n)$) via commutators of the multilinear Riesz transforms.

Keywords:Hardy space, BMO space, multilinear Riesz transform, weak factorization
Categories:42B35, 42B20

5. CMB Online first

Wang, Li-an Daniel
A Multiplier Theorem on Anisotropic Hardy Spaces
We present a multiplier theorem on anisotropic Hardy spaces. When $m$ satisfies the anisotropic, pointwise Mihlin condition, we obtain boundedness of the multiplier operator $T_m : H_A^p (\mathbb R^n) \rightarrow H_A^p (\mathbb R^n)$, for the range of $p$ that depends on the eccentricities of the dilation $A$ and the level of regularity of a multiplier symbol $m$. This extends the classical multiplier theorem of Taibleson and Weiss.

Keywords:anisotropic Hardy space, multiplier, Fourier transform
Categories:42B30, 42B25, 42B35

6. CMB 2015 (vol 58 pp. 507)

Hsu, Ming-Hsiu; Lee, Ming-Yi
VMO Space Associated with Parabolic Sections and its Application
In this paper we define $VMO_\mathcal{P}$ space associated with a family $\mathcal{P}$ of parabolic sections and show that the dual of $VMO_\mathcal{P}$ is the Hardy space $H^1_\mathcal{P}$. As an application, we prove that almost everywhere convergence of a bounded sequence in $H^1_\mathcal{P}$ implies weak* convergence.

Keywords:Monge-Ampere equation, parabolic section, Hardy space, BMO, VMO
Category:42B30

7. CMB 2014 (vol 58 pp. 432)

Yang, Dachun; Yang, Sibei
Second-order Riesz Transforms and Maximal Inequalities Associated with Magnetic Schrödinger Operators
Let $A:=-(\nabla-i\vec{a})\cdot(\nabla-i\vec{a})+V$ be a magnetic Schrödinger operator on $\mathbb{R}^n$, where $\vec{a}:=(a_1,\dots, a_n)\in L^2_{\mathrm{loc}}(\mathbb{R}^n,\mathbb{R}^n)$ and $0\le V\in L^1_{\mathrm{loc}}(\mathbb{R}^n)$ satisfy some reverse Hölder conditions. Let $\varphi\colon \mathbb{R}^n\times[0,\infty)\to[0,\infty)$ be such that $\varphi(x,\cdot)$ for any given $x\in\mathbb{R}^n$ is an Orlicz function, $\varphi(\cdot,t)\in {\mathbb A}_{\infty}(\mathbb{R}^n)$ for all $t\in (0,\infty)$ (the class of uniformly Muckenhoupt weights) and its uniformly critical upper type index $I(\varphi)\in(0,1]$. In this article, the authors prove that second-order Riesz transforms $VA^{-1}$ and $(\nabla-i\vec{a})^2A^{-1}$ are bounded from the Musielak-Orlicz-Hardy space $H_{\varphi,\,A}(\mathbb{R}^n)$, associated with $A$, to the Musielak-Orlicz space $L^{\varphi}(\mathbb{R}^n)$. Moreover, the authors establish the boundedness of $VA^{-1}$ on $H_{\varphi, A}(\mathbb{R}^n)$. As applications, some maximal inequalities associated with $A$ in the scale of $H_{\varphi, A}(\mathbb{R}^n)$ are obtained.

Keywords:Musielak-Orlicz-Hardy space, magnetic Schrödinger operator, atom, second-order Riesz transform, maximal inequality
Categories:42B30, 42B35, 42B25, 35J10, 42B37, 46E30

8. CMB 2011 (vol 56 pp. 229)

Arvanitidis, Athanasios G.; Siskakis, Aristomenis G.
Cesàro Operators on the Hardy Spaces of the Half-Plane
In this article we study the Cesàro operator $$ \mathcal{C}(f)(z)=\frac{1}{z}\int_{0}^{z}f(\zeta)\,d\zeta, $$ and its companion operator $\mathcal{T}$ on Hardy spaces of the upper half plane. We identify $\mathcal{C}$ and $\mathcal{T}$ as resolvents for appropriate semigroups of composition operators and we find the norm and the spectrum in each case. The relation of $\mathcal{C}$ and $\mathcal{T}$ with the corresponding Ces\`{a}ro operators on Lebesgue spaces $L^p(\mathbb R)$ of the boundary line is also discussed.

Keywords:Cesàro operators, Hardy spaces, semigroups, composition operators
Categories:47B38, 30H10, 47D03

9. CMB 2011 (vol 55 pp. 303)

Han, Yongsheng; Lee, Ming-Yi; Lin, Chin-Cheng
Atomic Decomposition and Boundedness of Operators on Weighted Hardy Spaces
In this article, we establish a new atomic decomposition for $f\in L^2_w\cap H^p_w$, where the decomposition converges in $L^2_w$-norm rather than in the distribution sense. As applications of this decomposition, assuming that $T$ is a linear operator bounded on $L^2_w$ and $0
Keywords:$A_p$ weights, atomic decomposition, Calderón reproducing formula, weighted Hardy spaces
Categories:42B25, 42B30

10. CMB 2010 (vol 54 pp. 159)

Sababheh, Mohammad
Hardy Inequalities on the Real Line
We prove that some inequalities, which are considered to be generalizations of Hardy's inequality on the circle, can be modified and proved to be true for functions integrable on the real line. In fact we would like to show that some constructions that were used to prove the Littlewood conjecture can be used similarly to produce real Hardy-type inequalities. This discussion will lead to many questions concerning the relationship between Hardy-type inequalities on the circle and those on the real line.

Keywords:Hardy's inequality, inequalities including the Fourier transform and Hardy spaces
Categories:42A05, 42A99

11. CMB 2009 (vol 52 pp. 521)

Chen, Yanping; Ding, Yong
The Parabolic Littlewood--Paley Operator with Hardy Space Kernels
In this paper, we give the $L^p$ boundedness for a class of parabolic Littlewood--Paley $g$-function with its kernel function $\Omega$ is in the Hardy space $H^1(S^{n-1})$.

Keywords:parabolic Littlewood-Paley operator, Hardy space, rough kernel
Categories:42B20, 42B25

12. CMB 2006 (vol 49 pp. 381)

Girela, Daniel; Peláez, José Ángel
On the Membership in Bergman Spaces of the Derivative of a Blaschke Product With Zeros in a Stolz Domain
It is known that the derivative of a Blaschke product whose zero sequence lies in a Stolz angle belongs to all the Bergman spaces $A^p$ with $01$). As a consequence, we prove that there exists a Blaschke product $B$ with zeros on a radius such that $B'\notin A^{3/2}$.

Keywords:Blaschke products, Hardy spaces, Bergman spaces
Categories:30D50, 30D55, 32A36

13. CMB 2005 (vol 48 pp. 370)

Daly, J. E.; Fridli, S.
Trigonometric Multipliers on $H_{2\pi}$
In this paper we consider multipliers on the real Hardy space $H_{2\pi}$. It is known that the Marcinkiewicz and the H\"ormander--Mihlin conditions are sufficient for the corresponding trigonometric multiplier to be bounded on $L_{2\pi}^p$, $1
Keywords:Multipliers, Hardy space
Categories:42A45, 42A50, 42A85

14. CMB 1999 (vol 42 pp. 97)

Kwon, E. G.
On Analytic Functions of Bergman $\BMO$ in the Ball
Let $B = B_n$ be the open unit ball of $\bbd C^n$ with volume measure $\nu$, $U = B_1$ and ${\cal B}$ be the Bloch space on $U$. ${\cal A}^{2, \alpha} (B)$, $1 \leq \alpha < \infty$, is defined as the set of holomorphic $f\colon B \rightarrow \bbd C$ for which $$ \int_B \vert f(z) \vert^2 \left( \frac 1{\vert z\vert} \log \frac 1{1 - \vert z\vert } \right)^{-\alpha} \frac {d\nu (z)}{1-\vert z\vert} < \infty $$ if $0 < \alpha <\infty$ and ${\cal A}^{2, 1} (B) = H^2(B)$, the Hardy space. Our objective of this note is to characterize, in terms of the Bergman distance, those holomorphic $f\colon B \rightarrow U$ for which the composition operator $C_f \colon {\cal B} \rightarrow {\cal A}^{2, \alpha}(B)$ defined by $C_f (g) = g\circ f$, $g \in {\cal B}$, is bounded. Our result has a corollary that characterize the set of analytic functions of bounded mean oscillation with respect to the Bergman metric.

Keywords:Bergman distance, \BMOA$, Hardy space, Bloch function
Category:32A37

15. CMB 1998 (vol 41 pp. 404)

Al-Hasan, Abdelnaser J.; Fan, Dashan
$L^p$-boundedness of a singular integral operator
Let $b(t)$ be an $L^\infty$ function on $\bR$, $\Omega (\,y')$ be an $H^1$ function on the unit sphere satisfying the mean zero property (1) and $Q_m(t)$ be a real polynomial on $\bR$ of degree $m$ satisfying $Q_m(0)=0$. We prove that the singular integral operator $$ T_{Q_m,b} (\,f) (x)=p.v. \int_\bR^n b(|y|) \Omega(\,y) |y|^{-n} f \left( x-Q_m (|y|) y' \right) \,dy $$ is bounded in $L^p (\bR^n)$ for $1
Keywords:singular integral, rough kernel, Hardy space
Category:42B20

16. CMB 1998 (vol 41 pp. 196)

Nakazi, Takahiko
Brown-Halmos type theorems of weighted Toeplitz operators
The spectra of the Toeplitz operators on the weighted Hardy space $H^2(Wd\th/2\pi)$ and the Hardy space $H^p(d\th/2\pi)$, and the singular integral operators on the Lebesgue space $L^2(d\th/2\pi)$ are studied. For example, the theorems of Brown-Halmos type and Hartman-Wintner type are studied.

Keywords:Toeplitz operator, singular integral, operator, weighted Hardy space, spectrum.
Category:47B35

17. CMB 1997 (vol 40 pp. 475)

Lou, Zengjian
Coefficient multipliers of Bergman spaces $A^p$, II
We show that the multiplier space $(A^1,X)=\{g:M_\infty(r,g'') =O(1-r)^{-1}\}$, where $X$ is $\BMOA$, $\VMOA$, $B$, $B_0$ or disk algebra $A$. We give the multipliers from $A^1$ to $A^q(H^q)(1\le q\le \infty)$, we also give the multipliers from $l^p(1\le p\le 2), C_0, \BMOA$, and $H^p(2\le p<\infty)$ into $A^q(1\le q\le 2)$.

Keywords:Multiplier, Bergman space, Hardy space, Bloch space, $\BMOA$.
Categories:30H05, 30B10

© Canadian Mathematical Society, 2017 : https://cms.math.ca/