1. CMB 2017 (vol 60 pp. 253)
 Chen, Bin; Zhao, Lili

On a Yamabe Type Problem in Finsler Geometry
In this paper, a new notion of scalar curvature for a Finsler
metric $F$ is introduced, and two conformal invariants $Y(M,F)$
and $C(M,F)$ are defined. We prove that there exists a Finsler
metric with constant scalar curvature in the conformal class
of $F$ if the Cartan torsion of $F$ is sufficiently small and
$Y(M,F)C(M,F)\lt Y(\mathbb{S}^n)$ where $Y(\mathbb{S}^n)$ is the
Yamabe constant of the standard sphere.
Keywords:Finsler metric, scalar curvature, Yamabe problem Categories:53C60, 58B20 

2. CMB 2015 (vol 58 pp. 530)
 Li, Benling; Shen, Zhongmin

Ricci Curvature Tensor and NonRiemannian Quantities
There are several notions of Ricci curvature tensor
in Finsler geometry and spray geometry. One of them is defined by the
Hessian of the wellknown Ricci curvature.
In this paper we will introduce a new notion of Ricci curvature
tensor and discuss its relationship with the Ricci curvature and some
nonRiemannian quantities. By this Ricci curvature tensor, we shall
have a better understanding on these nonRiemannian quantities.
Keywords:Finsler metrics, sprays, Ricci curvature, nonRiemanian quantity Categories:53B40, 53C60 

3. CMB 2011 (vol 56 pp. 184)
 Shen, Zhongmin

On Some NonRiemannian Quantities in Finsler Geometry
In this paper we study several nonRiemannian quantities in Finsler
geometry. These nonRiemannian quantities play an important role in
understanding the geometric properties of Finsler metrics. In
particular, we study a new nonRiemannian quantity defined by the
Scurvature. We show some relationships among the flag curvature,
the Scurvature, and the new nonRiemannian quantity.
Keywords:Finsler metric, Scurvature, nonRiemannian quantity Categories:53C60, 53B40 

4. CMB 2011 (vol 55 pp. 138)