1. CMB 2007 (vol 50 pp. 284)
 McIntosh, Richard J.

Second Order Mock Theta Functions
In his last letter to Hardy, Ramanujan
defined 17 functions $F(q)$, where $q<1$. He called them mock theta
functions, because as $q$ radially approaches any point $e^{2\pi ir}$
($r$ rational), there is a theta function $F_r(q)$ with $F(q)F_r(q)=O(1)$.
In this paper we establish the relationship between two families of mock
theta functions.
Keywords:$q$series, mock theta function, Mordell integral Categories:11B65, 33D15 

2. CMB 2005 (vol 48 pp. 147)
 Väänänen, Keijo; Zudilin, Wadim

BakerType Estimates for Linear Forms in the Values of $q$Series
We obtain lower estimates for the absolute values
of linear forms of the values of generalized Heine
series at nonzero points of an imaginary quadratic field~$\II$,
in particular of the values of $q$exponential function.
These estimates depend on the individual coefficients,
not only on the maximum of their absolute values.
The proof uses a variant of classical Siegel's method
applied to a system of functional Poincar\'etype equations
and the connection between the solutions of these functional
equations and the generalized Heine series.
Keywords:measure of linear independence, $q$series Categories:11J82, 33D15 

3. CMB 1998 (vol 41 pp. 86)